
REDACTED VERSION

French Ltd. Project

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

April, 1995

French Ltd. Project

FLTG, Inc.

Crosby, Texas

MONTHLY PROGRESS REPORT

Submitted to:

U.S. Environmental Protection Agency - Region 6 and Texas Natural Resource Conservation Commission

April, 1995

CONTENTS

1.0	INTRO	DUCTION	1-1									
2.0	SUMM	ARY	2-1									
	2.1	Summary of Activities and Progress	2-1									
		2.1.1 Health and Safety	2-1									
		2.1.2 Quality/QAQC/Data Base Management	2-2									
		2.1.3 Lagoon Remediation	2-2									
		2.1.4 Ambient Air Management	2-2									
		2.1.5 Aquifer Remediation	2-3									
		2.1.6 Groundwater Treatment	2-4									
		2.1.7 Wetlands Restoration	2-4									
		2.1.8 Site Management and Issues	2-4									
	2.2	Problem Areas and Recommended Solutions	2-10									
	2.3	Problems Resolved	2-11									
2.4 Deliverables Submitted												
	2.5	Upcoming/Ongoing Events and Activities 2-1										
	2.6	Key Staffing Changes2-										
	2.7	Percent Complete										
	2.8	Schedule										
	2.9	Operations and Monitoring Data2-										
	2.10	Credits Accrued/Applied	2-14									
	2.11	Community Relations										
3.0	LAGO	N	3-									
	3.1	Summary of Activities	3-1									
	3.2	Problems and Response Action	3-									
	3.3	Problems Resolved	3-									
	3.4	Deliverables Submitted	3-2									
	3.5	Upcoming Events and Activities	3-2									
4.0	GROUN	NDWATER AND SUBSOIL REMEDIATION	4-1									
	4.1	Summary of Activities	4-1									
		4.1.1 Operation of Production and Injection Well Systems	4-1									
		4.1.2 Operational Monitoring	4-									
		4.1.3 Data Management and Evaluation	4-									
	4.2	Problems and Response Actions	4-									

CONTENTS (Continued)

	4.3	Pending Is	ssues	4-9
		4.3.1	S1 Unit Pulse Pumping	4-9
	4.4	Operation	al Refinements	4-9
	4.5	Data Sum	nmary and Discussion	4-9
		4.5.1	Groundwater Production and Injection	4-9
		4.5.2	Groundwater Levels and Flow Directions	4-9
		4.5.3	TOC in Shallow Groundwater	4-9
		4.5.4	In-Situ Bioremediation	4-9
	4.6	Schedule		4-10
5.0	GROUN	NDWATER	TREATMENT PLANT	5-1
	5.1	Summary	of Activities	5-1
	5.2	Inoculum	/Nutrient Addition	5-2
	5.3	Maintena	nce	5-2
	5.4	Operating	Data	5-2
6.0	AMBIE	NT AIR MA	NAGEMENT	6-1
	6.1	Summary	of Activities	6-1
	6.2	Problems	and Response Action	6-1
	6.3	Problems	Resolved	6-2
	6.4	On-going	Events/Activities	6-2
7.0	QUALI	TY ASSUR	ANCE/QUALITY CONTROL	7-1
	7.1	Summary	of Activities	7-1
		7.1.1	Sampling	7-1
		7.1.2	Data Validation Activities Summary	7-1
		,	7.1.2.1 Treated Water Samples	7-1
			7.1.2.2 Groundwater Samples	7-1
		•	7.1.2.3 Other Samples	7-1
	7.2	Data Vali	dation QC Summary and Discussion	7-2
		7.2.1	Level I and Level II QC Philosophy	7-2
		7.2.2	Completeness Summaries	7
8.0	SITE M	IAINTENAN	ICE	: : 8-1
	8.1	Summary	of Activities	8-1
		8.1.1	General Housekeeping	8-1

CONTENTS (Continued)

		8.1.2	Purchasing	8-1					
		8.1.3	Equipment Maintenance	8-1					
	8.2	Visitors		8-1					
	8.3	Emerger	ncy Equipment	8-3					
		8.3.1	Flood Gate Test	8-4					
		8.3.2	P-8 Auxiliary Pump	8-4					
		8.3.3	Fire Extinguishers	8-4					
	8.4	Security	/	8-4					
	8.5	Operato	r Training	8-4					
	8.6	Data Management							
	8.7	Personnel Monitoring							
	8.8	OVM Sy	ystem	8-4					
	8.9	Reposito	ory	8-5					
	8.10	Meteoro	ological Data	8-5					
9.0	WETLA	ANDS RES	STORATION	9-1					
	9.1		ry of Activities and Progress	9-1					
	9.2		Areas and Solutions	9-2					
	9.3		s Resolved	9-2					
	9.4		bles Submitted	9-2					
	9.5		ng Events and Activities	9-3					

CONTENTS (Continued)

LIST OF ILLUSTRATIONS

LIST OF FIGURES

4-1 4-2 4-3	Production Flows	4-7 4-8 4-12
4-4	Coupon HMB Values for INT Zone	4-13
LIST	OF TABLES	
2-1	Ambient Air Management Time Integrated Exposure Data	2-6
2-2	Project Quality	2-7
2-3	Treated Water Results Summary	2-8
4-1	Groundwater System Operation, April, 1995	4-2
4-2	Daily Groundwater Production and TOC Removal, April, 1995	4-3
4-3	Daily Injection Flows, April, 1995	4-4
4-4	Average Production and Injection Flow Rates, April, 1995	4-5
4-5	Operational Monitoring, April, 1995	4-6
4-6	Biological Activity Monitor Results and Statistics	4-11
4-7	History of TOC Concentrations at S1 Production Wells	4-14
4-8	History of TOC Concentrations at INT Production Wells	4-15
4-9	Dissolved Oxygen at Production Wells	4-16
4-10	Dissolved Oxygen at Monitoring Wells	4-18
5-1	Preventive Maintenance	5-3
5-2	Treated Water Results Summary	5-4
7-1	Samples Collected - April, 1995	7-3
7-2	Scheduled Sampling Events, April, 1995	7-7
7-3	Treated Water QC Failure Summary	7-8
7-4	Completeness Summary, M03A Treated Water - Volatile	
	Organics Analyses	7-10
7-5	Completeness Summary, M03A Treated Water - Semivolatile	
	Organic Analyses	7-11

MONTHLY PROGRESS REPORT Table of Contents

French Ltd. Project

FLTG, Incorporated

CONTENTS (Continued)

7-6	Completeness Summary, M03A Treated Water - PCB Analyses	7-12
7-7	Completeness Summary, M03A Treated Water - Metals Analyses	7-13
7-8	Completeness Summary, M03A Treated Water - Miscellaneous	
	Parameters Analyses	7-16
8-1	On-Site Employee Contaminant Limits (From OSHA 29 CFR 1910 Subpart Z).	8-6
8-2	Rainfall Data for April, 1995	8-7

CONTENTS (Continued)

LIST OF ATTACHMENTS

8A Repository Status Report: April, 1995

LIST OF APPENDICES

Appendix A - None

Appendix B - None

Appendix C - Analytical Results -

Samples Dated April, 1995

Project I.D.	Date Received	Project I.D.	Date Received
M04A0029	4/03/95	S16B0031	4/13/95
M08C0011	4/03/95	M03A0320	4/14/95
M03A0317	4/04/95	M04C0026	4/18/95
M04A0030	4/04/95	M03A0321	4/19/95
M04B0027	4/04/95	M03A0322	4/27/95
M04C0019	4/04/95	M03A0323	4/28/95
M03A0318	4/05/95	M04A0031	4/28/95
M08A0020	4/05/95	M04A0032	4/28/95
M08B0008	4/05/95	M04B0029	4/28/95
M04B0028	4/06/95	M04B0030	4/28/95
M04C0020	4/06/95	M04B0031	4/28/95
M08D0014	4/06/95	M04C0021	4/28/95
M03A0319	4/12/95	M04C0024	4/28/95

1.0 INTRODUCTION

This report covers the activities of FLTG, Inc. and the French Limited Project for April, 1995. FLTG, Inc. manages the project for the French Limited Task Group of Potentially Responsible Parties.

During April, 1995, the project team focused on the following activities and issues:

- Health, Safety, and Quality.
- Safety awareness.
- Contractor safety.
- HAZOP of daily work assignments.
- Detecting and correcting work place hazards.
- Vegetation evaluation in Cell E.
- Operation and maintenance of the aquifer remediation system.
- In-situ aquifer bioremediation.
- Lease Waitkus property south of Gulf Pump Road.
- Water treatment plant operation and maintenance.
- Operation of the data base management system.
- Wetlands project construction.
- This report includes:
 - A summary of April activities, issues, and progress.

- Lagoon area maintenance.
- Groundwater and Subsoil Remediation activities, issues, and progress.
- Groundwater Treatment Plant activities and issues.
- Ambient Air Management status.
- QA/QC status and data.
- Site management activities and issues.
- Wetlands restoration activities, issues, and progress.

2.0 SUMMARY

2.1 Summary of Activities and Progress

2.1.1 Health and Safety

An operator cut his hand on a vacuum pump moisture trap; no medical attention was required.

There were no equipment damage incidents.

All site workers earned the April safety bonus.

Conducted safety meetings and job inspections at the start of each shift; reviewed safety issues before starting all jobs.

All employees and contractors attended daily safety meetings.

Conducted daily mini-HAZOP of all specific jobs.

Supervision made 205 specific on-the-job safety contacts.

Emphasized the causes, symptoms, and treatment of heat stress.

Inspected and certified all fire extinguishers.

Emphasized the hazards and precautions associated with working around moving equipment.

Conducted 22 specific health and safety inspections.

Logged all safety issues each shift; less than 24-hour response to all safety issues.

The daily raffle ticket safety awareness program has been effective in maintaining daily safety awareness among all site personnel and contractors.

Conducted personnel exposure monitoring, and all results were within acceptable levels. The most recent results are in Table 2-1.

2.1.2 Quality/QAQC/Data Base Management

The total quality process was used. The status of the goals is shown on Table 2-2.

The agencies had no comments on the 1994 Annual QAQC Report.

Raw data is being validated as per the plan.

The data base management system operated with no problems or delays.

There were no data or reports rejected due to errors.

American Analytical continued to provide data on time.

2.1.3 Lagoon

Received lagoon completion certification from the EPA.

Maintained a high level of biological activity in Cell D; OUR and HMB were high. Added O_2 to Cell D using a downdraft aerator for six days.

Continued periodic subsurface injection of Cell D water in Cell E; there were no problems or issues, and adequate gradient control was maintained.

Continued evaluation of various tree and bush species for passive dewatering of the subsurface inside the floodwall.

Tested floodwall gate closure.

2.1.4 Ambient Air Management

Ambient air quality was mariually checked daily with portable analyzers, and no response action was required.

Air quality was continuously monitored in all potential exposure areas and on all special jobs.

Time-integrated samples were collected in three work areas, and the results indicated no exposure; the data is shown in Table 2-1.

2.1.5 Aquifer Remediation

Monitored status of DNAPL plumes.

Continued routine S1 and INT oxygen and nutrient injection.

Continued to evaluate ways to increase INT remediation rates in the INT-11 wall area and the SW area.

Installed three new INT pumping wells in critical areas.

Flows continued to increase in the sand fracture areas.

Operated vacuum-enhanced pumping systems for INT wells; plan to vacuum enhance two of the three new INT pumping wells.

Issued weekly well status and performance reports.

Inspected and adjusted all wells each day.

Continued daily maintenance of recovery and injection wells.

Completed monthly well measurements and sampling; TOC levels continue to decrease; DO levels continue to increase.

Maintained O₂ content of injection water at about 40-45 ppm.

Shut off 8 more production or injection wells in areas that have reached aquifer remediation shut-off criteria; monthly sampling indicated no rebound and indicated favorable gradient control.

2.1.6 Groundwater Treatment

The treated water did not require carbon treatment to maintain effluent criteria.

There was no downtime.

Submitted a refinement notice to increase the effluent criteria for Ba from 200 ppb to 1,000 ppb.

The water treatment plant effluent data is shown in Table 2-3. All effluent samples met criteria.

TOC input to T-101 continued to decrease.

The process operators collected all the process water and ground water samples.

2.1.7 Wetlands Restoration

Dewatering was required after every rainfall.

Continued final grading and topsoil replacement in selected areas.

Continued excavation of flow channels; relatively dry weather allowed good progress on site excavation.

Continued construction of the bridges.

Completed the fresh water ponds on the islands.

Reviewed status, progress, and issues with the TNRCC.

Started selective planting.

Conducted site tour for Baytown officials.

2.1.8 Site Management and Issues

Used the on-site laboratory to process all the operational control samples.

Reviewed site progress and issues in detail with EPA and TNRCC on a regular basis.

Validated all analytical data as per the QAQC plan.

Reviewed project status and issues each day to ensure focus on critical issues - safety, quality, cost, INT zone progress, and wetlands construction.

Issued weekly cost, schedule, and maintenance reports.

Reviewed progress on issues and action plans each week.

Reduced aquifer remediation operational and maintenance requirements.

Reduced technical support MH's.

Evaluated site security requirements.

Implemented project manpower reduction plan.

TABLE 2-1

Ambient Air Management Time Integrated Exposure Data

	PEL	1 12-Apr-95			12-Apr-95	3 12-Apr-9		
	8 hour	Maint.	, 1	WTP Oo		WTP Op		
Compound	PPM	% of PEL	PPM	% of PEL	PPM	% of PEL	PPM	
		1			' '	, , , , , , ,	'''	
Chloromethane	50	0.000	0.000	0.003	0.001	0.001	0.001	
Bromomethane	5	0.000	0.000	0.004	0.000	0.002	0.000	
Vinyl chloride	1	0.000	0.000	0.000	0.000	0.000	0.000	
Chloroethane	1000	0.000	0.000	0.000	0.000	0.000	0.000	
		į.				0.000	0.000	
Dichloromethane	50	0.001	0.000	0.007	0.003	0.002	0.001	
Acetone	750	0.002	0.012	0.001	0.010	0.002	0.015	
Carbon disulfide	10	0.000	0.000	0.000	0.000	0.000	0.000	
1,1-Dichloroethene	5	0.037	0.002	0.000	0.000	0.000	0.000	
1,1-Dichloroethane	100	0.000	0.000	0.000	0.000	0.000	0.000	
trans-1,2-Dichloroethe	200	0.000	0.000	0.001	0.003	0.000	0.001	
Chloroform	10	0.003	0.000	0.028	0.003	0.053	0.005	
1,2-Dichloroethane	10	0.002	0.000	0.020	0.002	0.035	0.003	
2-Butanone	200	0.022	0.043	0.002	0.004	0.004	800.0	
:			0.040	0.002	0.004	0.004	0.000	
1,1,1-Trichloroethane	350	0.010	0.037	0.000	0.001	0.001	0.002	
Carbon Tetrachloride	5	0.003	0.000	0.030	0.002	0.111	0.002	
Vinyl acetate	10	0.002	0.000	0.000	0.000	0.005	0.000	
Bromodichloromethane	1		0.000	3.555	0.000	0.000	0.000	
1,2-Dichloropropane	75	0.000	0.000	0.000	0.000	0.000	0.000	
cis-1,3-Dichloropropen	1	0.000	0.000	0.000	0.000	0.000	0.000	
Trichloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000	
Dibromochloromethane			0.000		0.000	0.000	0.000	
1,1,2-Trichloroethane	10	0.000	0.000	0.000	0.000	0.000	0.000	
Benzene	1	0.086	0.001	0.112	0.001	0.178	0.002	
trans-1,3-Dichloroprop	1	0.000	0.000	0.000	0.000	0.000	0.000	
2-Chloroethylvinyl ethe	!		0.000	0.000	0.000	0.000	0.000	
	•		0.000		0.000		0.000	
Bromoform	0.5	0.000	0.000	0.000	0.000	0.000	0.000	
4-Methyl-2-pentanone	50	0.000	0.000	0.000	0.000	0.001	0.001	
2-Hexanone	5	0.000	0.000	0.000	0.000	0.004	0.000	
Tetrachloroethene	50	0.000	0.000	0.001	0.000	0.007	0.003	
1,1,2,2-Tetrachloroet	1	0.000	0.000	0.000	0.000	0.000	0.000	
Toluene	100	0.000	0.000	0.001	0.001	0.002	0.002	
Chlorobenzene	10	0.000	0.000	0.000	0.000	0.000	0.002	
Ethylbenzene	100	0.000	0.000	0.000	0.000	0.000	0.000	
Styrene	50	0.000	0.000	0.000	0.000	0.000	0.000	
Xylene (total)	100	0.000	0.000	0.000	0.000	0.001	0.000	
Hexane			0.001	0.000	0.002	0.00	0.003	
		<u> </u>	3,00		3.002	لــــــا	3.000	

TABLE 2-2

Project Quality

Status as of										
04/30/95		Goals								
Yes	1)	No OSHA recordable injuries.								
Attention	2)	100% compliance with all sa	fety rules and procedures.							
Yes	3)	No citations for violations of applicable, relevant and appropriate regulations.								
Yes	4)	100% attendance (including subcontractors) at daily safety meetings.								
Attention	5)	Less than 24-hour response t	time on health and safety issues.							
Yes	6)	100% sign-in and security cle	earance.							
Yes	7)	No invalidation of reported da	ata due to QA/QC issues.							
	4									
	. 8)	Spend less than:								
			MH/Month							
Yes	; • D	irect hire	3,000							
Yes		LTG management	700							
Yes/Attention		echnical support (3 people)	600							
Yes		laintenance support	120							
	P	• •	·							
V	. O.	Duran et lanet 00 com inimet	at least 60 ann							
Yes	9)	Pump at least 90 gpm; inject	- · · · · · · · · · · · · · · · · · · ·							
Yes	10)	Remediate shallow alluvial zo								
Yes	11)	only).	nan \$20,000 per month (1994							
Yes	12)	No unscheduled overtime (pe	r day or per week).							
Yes	13)	No agency contacts which re	equire 3rd party resolution.							
Yes	14)	Documented training of site passignments.	personnel for all work							
Yes	15)	Weekly audit of actual perfor	mance versus goals.							

TABLE 2-3
Treated Water Results Summary

		Γ	PH TSS TOC 0&G		Benz	rene	Chlo	r HC's	Total	PCBs	Napthalene						
Collected	Set No.		6-9)	5 (PPM	55 i	PPM	15 F	PM	150	PPB	500 PPB		0.65 PPB		300	PPB
	· . ·	Daily	R-Avg	Daily	R-Avg	·- Daily ··	R-Avg	TO Daily	R-Avg	Daily "	" R-Avg"	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
2-Jan-95	M03A0296	7.78		4.	* · · · · · · · · · · · · · · · · · · ·	12.9		2.5		5.		275.		.16		5.	
5-Jan-95	M03A0297	7.81		5.		19.		2.5		6.		249.		.16		5.	
9-Jan-95	M03A0298	7.8		7.		9.8		2.5	i	2.5		124.		.16		5.	
12 Jan-95	M03A0299	7.77		2.		9.8		2.5		2.5		200.		.16		5.	
16-Jan-95	M03A0300	7.61		- 4.		18.3		2.5		6.		393.		.16		5.	
19 Jan-95	M03A0301	7.44		2.		19.8		2.5		5.		454.		.16		5.	
23-Jan-95	M03A0302	7.82		9.		35.5		2.5		6.		192.		.16		5.	
26-Jan-95	M03A0303	7.66		.5		20.5		2.5		6.		234.		.16		5.	
30 Jan-95	M03A0304	7.15	7.8	4.	4.2	44.3	21.1	2.5	2.5	25.	7.1	2326.	494	.16	.16	5.	5.
2-Feb-95	M03A0305	7.28	7.6	.5	3.8	11.7	21.	2.5	2.5	6.	7.2	613.	532	.16	.16	5.	5.
6·Feb·95	M03A0306	7.55	7.6	1.	3.3	11.7	20.2	2.5	2.5	5.	7.1	411.	550	.16	.16	5.	5.
9-Feb-95	M03A0307	7.52	7.5	5.	3.1	8.8	20.	2.5	2.5	5.	7.4	226.	561	.16	.16	5.	5.
13-Feb-95	M03A0308	7.5	7.5	22.	5.3	9.7	20.	2.5	2.5	5.	7.7	349.	578	.16	.16	5.	5.
16-Feb-95	M03A0309	7.33	7.5	.5	4.9	5.2	18.6	2.5	2.5	5.	7.6	276.	565	.16	.16	5.	5.
20-Feb-95	M03A0310	7.37	7.5	6.	5.4	5.8	17.	2.5	2.5	4.	7.4	193.	536	.16	.16	5.	5.
23·Feb-95	M03A0311	7.29	7.4	1.	4.5	1.	13.2	2.5	2.5	2.5	7.1	60.	521	.16	.16	5.	5.
27-Feb-95	M03A0312	7.46	7.4	3.	4.8	9.5	12.	2.5	2.5	2.5	6.7	164.	513	.16	.16	5.	5.
2-Mar-95	M03A0313	7.47	7.4	.5	4.4	8.5	8.	2.5	2.5	2.5	4.2	145.	271	.16	.16	5.	5.
6-Mar-95	M03A0314	7.49	7.4	1.	4.4	8.1	7.6	2.5	2.5	2.5	3.8	128.	217	.16	.16	5.	5.
9-Mar-95	M03A0315	7.38	7.4	1.	4.4	8.	7.2	2.5	2.5	2.5	3.5	193.	193	.16	.16	5.	5.
13-Mar-95	M03A0316	7.64	7.4	5.	4.4	7.2	7.	2.5	2.5	2.5	3.22	111.	180	.16	.16	5.	5.
16-Mar-95	M03A0317	7.55	7.4	.5	2.1	6.	6.6	2.5	2.5	2.5	2.9	150.	158	.16	.16	5.	5.
20-Mar-95	M03A0318	7.41	7.5	.5	2.1	6.6	6.7	2.5	2.5	2.5	2.7	97.	138	.16	.16	5.	5.
23-Mar-95	M03A0319	7.45	7.5	1.	1.5	6.	6.8	2.5	2.5	2.5	2.5	185.	137.	.16	.16	5.	5.
27-Mar-95	M03A0320	7.83	7.5	3.	1.7	12.2	8.	2.5	2.5	6.	2.9	325.	166	.16	.16	5.	5.
30-Mar-95	M03A0321	7.47	7.5	7.	2.2	11.9	8.3	2.5	2.5	6.	3.3	342.	186	.16	.16	5.	5.
3-Apr-95	M03A0322	7.42	7.5	1.	2.2	11.7	8.6	2.5	2.5	6.	3.7	269.	200	.16	.16	5.	5.
6-Apr-95	M03A0323	7.45	7.5	2.	2.3	12.2	9.1	2.5	2.5	6.	4.1	239.	212	.16	.16	5.	5.
10-Apr-95	M03A0324	7.38	7.5	2.	2.4	11.1	9.4	2.5	2.5	6.	4.4	230.	216	.16	.16	5.	5.
13-Apr-95	M03A0325	7.62	7.5	3.	2.2	12.9	10.1	2.5	2.5	6.	4.8	364.	245	.16	.16	5.	5.
17-Apr-95	M03A0326	7.59	7.5	11.	3.4	12.9	10.8	2.5	2.5	6.	5.2	247.	255	.16	.16	5.	5.
20-Apr-95	M03A0327	7.75	7.55	1.	3.4	12.1	11.4	2.5	2.5	6.	5.6	226.	270	.16	.16	5.	5.
24-Apr-95	M03A0328	7.67	7.58	13.	4.8	13.	12.2	2.5	2.5	6.	6.	269.	279.	.16	.16	5.	5.
27-Apr-95	M03A0329	7.51	7.54	1.	4.6	12.2	12.2	2.5	2.5	2.5	5.6	236.	269	.16	.16	5.	5.
1·May·95	M03A0330	7.63	7.56														_

Chlorinated hydrocarbons value is the sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 2-3 (Continued) Treated Water Results Summary

												Pt	. 7	M			(g		Vi i	s	•	A	, 7	Z	'n
		A:		B			d		200		Cu PPB	66 F		300			PPB		PPB		PPB	5 P		162	PPB
Collected	Set No.	150		1000			PP8	500			R:Avg		R:Ava	Daily		_	R-Avg		R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg
		Daily	R-Avg	Daily.	R-Avg		H-AVg	Daily	H-AVQ	1.6	I-U:YAA	.5	11:548	18.	11.7149	.1		1.	L	1.2		.2		7.	
	M03A0296	9.9	- 1	172.		.1	1	3.		2.		.5	-	57.		.1		6.		1.2		.2		20.	1
5-Jan-95	M03A0297	14.	I	151.		.1		.9		3.		.5	i	23.		.1		4.		1.3		.2		7.	- 1
• • • • • •	M03A0298	12.	I	171.	İ	.1		.2		2.		.5	1	2.		.1		2.	'	1.3		.2		3.	1
	M03A0299	16.		143.				.6		3.		.5		1.	:	.1		3.	-	1.3		.2		6.	1
16-Jan-95		12.		146.		.1		.0		2.		.5		2.		.1		4.	!	1.3		.2		18.	
19-Jan-95		18.	l	135. 140.		.1		.2		2.		.5		3.		.1		6.		1.3		.2		16.	- 1
23-Jan-95		12.	- 1	148.		.1		.2		2.	1	.5		2.		.1		2.		1.3		.2		12.	- 1
26-Jan-95	M03A0303 M03A0304	16. 9.		238.		.1		.2		2.		.5	1	43.		.1		3.		1.3		.2		5.	1
30-Jan-95 2-Feb-95	M03A0304	10.	13.2	192.	163	.1	.1	1.	.7	2.	2.2	.5	.5	15.	16.4	.1	.1	4.	3.8	1.3	1.2	.2	.2	8.	10.6
6-Feb-95	M03A0305	11.	12.9	188.	187	.1	.i	.2	.4	1.	2.1	.5	.5	4.	10.6	.1	.1	2.	3.3	1.3	1.3	.2	.2	5.	8.9
9-Feb-95	M03A0307	16.	13.3	195.	169	.1	.1	.2	.3	4.	2.2	.5	.5	6.	8.7	.1	.1	6.	3.6	1.3	1.3	.2	.2	11.	9.3
13-Feb-95	M03A0308	13.	13.	184.	174	.1		2.	.5	1.	2.1	.5	.5	15.	10.1	.1	.1	5.	3.9	1.3	1.3	.2	.2	8.	9.9
16-Feb-95	M03A0309	12.	13.	184.	178	.1	.1	.2	.5	1.	1.9	.5	.5	6.	10.7	.1	.1	6.	4.2	1.3	1.3	.2	.2	7.	10.
20-Feb-95	M03A0310	14.	12.6	191.	184	.1	.1	2.	.7	2.	1.9	.5	.5	27.	13.4	.1	.1	8.	4.7	1.3	1.3	.3	.2	6.	8.7
23-Feb-95	M03A0311	13.	12.7	165.	187	.1	.1	1.	.8	2.	1.9	.5	.5	3.	13.4	.1	.1	8.	4.9	1.3	1.3	.2	.2	9.	7.9
27-Feb-95	M03A0312	22.	13.3	144.	187	.1	.1	4.5	1.2	3.	2.	.5	.5	3.	13.6	.1	.1	12.	6.	1.3	1.3	.5	.2	2.5	6.8
2-Mar-95	M03A0313	23.	14.9	133.	175	.1	.1	2.	1.4	1.	1.9	.5	.5	15.	10.4	1.	.1	8.	6.6	1.3	1.3	.5	.2	6.	6.9 6.9
6-Mar-95	M03A0314	17.	15.7	130.	168	1.	.2	1.	1.4	3.	2.	2.2	.7	3.	9.1	.1	.1	2.5	6.4	.5	1.2	.8	.3	8. 6.	7.1
9-Mar-95	M03A0315	24.	17.1	111.	160	.1	.2	.2	1.4	.8	2.	.5	.7	4.	9.1	.1	.1	4.	6.6	1.3	1.2	.2	.3	5.	6.4
13-Mar-95	M03A0316	17.	17.2	121.	151	.1	.2	.2	1.4	1.	1.6	.5	.7	41.	13.	.1	.1 .	3.	6.3	1.3	1.2	.2	.3	11.	6.7
16-Mar-95	M03A0317	23.	18.3	114.	144	.1	.2	.3	1.3	3.	1.9	.5	.7	2.	11.6	.1	.1	3.	6.1	1.3	1.2	.2	.3	3.	6.3
20-Mar-95	M03A0318	18.	19.	112.	136	.1	.2	.2	1.3	3.	2.1	.5	.7	2.	11.1	.1	.1	2.	5.6	1.3 1.3	1.2	.2 .2	.3	4.	6.1
23-Mar-95	M03A0319	19.	19.6	119.	128	.1	.2	.2	1.	2.	2.1	.5	.7	2.	8.3	.1	.1	3.	5.1 4.7	1.3	1.2	.2	.3	40.	9.5
27-Mar-95	M03A0320	14.	19.7	130.	124	1	.2	3.	1.3	2	2.1	.5	- <u>-7</u>	22.	10.4	-!-		5. 6.	4.1	1.3	1.2	.2	.3	8.	10.1
30-Mar-95	M03A0321	19.	19.3	132.	122	.1	.2	2.	1.	2.	2.	.5	.7	25.	12.9	.1	.1		3.3	1.3	1.2	.2	.2	15.	11.1
3-Apr-95	M03A0322	17.	18.7	127.	122	.1	.2	.2	.8	2.	2.1	.5	.7	9.	12.2	.1	.1 .1	1. 1.	3.1	1.3	1.3	.2	.2	4.	10.7
6-Apr-95	M03A0323	23.	19.3	102.	119	.1	.1	.2	.7	1.	1.9	.5	.5	4.	12.3	.1	.1	4.	3.1	1.3	1.3	.2	.2	8.	10.9
10-Apr-95	M03A0324	12.	18.	157.	124	.1	.1	2.	.9	2.	2.	2.	.7	32.	15.4	.1 .1	.1	6.	3.4	1.3	1.3	.2	.2	3.	10.7
13-Apr-95	M03A0325	44.	21.	107.	122	.1	.1	1.	1.	2.	2.1	.5	.7	11.	12.1	1	.1	14.	4.7	1.3	1.3	.2	.2	17.	11.3
17-Apr-95	M03A0326	26.	21.3	171.	129	.1	.1	14.	2.5	2.	2.	1.	.7 .9	108.	23.9 28.4	.1	.1	10.	5.6	1.3	1.3	.2	.2	34.	14.8
20-Apr-95	M03A0327	24.	22.	129.	130	.7	.2	7.	3.3	9.	2.7	2.		43.	32.4	.1	.1	6.	5.9	1.3	1.3	.2	.2	4.	14.8
24-Apr-95	M03A0328	21.	22	115.	130.	1	.2	7.	4.	1.	2.6	.5	.9	38. 12.	31.3	1 .1	.1	7.	6.1	1.3	1.3	.2	.2	9.	11.3
27-Apr-95	M03A0329	24.	23.3	110.	128	<u>l1</u>	.2	2.	3.9	2.	2.6	.5	.9	12.	31.3	<u> </u>	<u>'</u>	L	<u> </u>						

Metals values in PPB.

2.2 Problem Areas and Recommended Solutions

P	r	o	bl	e	m

Solution

Maintain high level of safety awareness.

Daily raffle ticket program. Daily safety meetings. Safety meeting participation.

On-the-Job safety attention.

Contact all employees at least twice per day on safety issues. Review job details as work proceeds. Stop and challenge approach.

Hazard detection and response.

Safety inspections. HAZOP's on all jobs. Constant awareness.

Low flow in some INT pumping and injection wells.

Vacuum enhanced pumping. Increase injection pressure in some areas. Selected sand fracturing.

Slow progress on wetlands excavation.

Adjust work schedules when having wet weather; flexible field work plan.

Increase INT zone remediation rate.

Increase pumping and injection rates.

Low flushing rate in INT zone just SW of INT-11 wall.

Install two pumping wells and two injection wells; vacuum enhance the new pumping wells.

Affected soil in excavation at wetlands project.

Secure the area; sample and analyze; reroute the excavation; review with City of Baytown officials.

2.3 Problems Resolved

Problem

Solution

Cell D water handling.

Inject into Cell E subsurface as required.

Lagoon remediation confirmation.

Received certification notice from EPA.

Nutrient circulation on far SW end of INT

Installed one pumping well.

plume.

Access to Waitkus property.

Leased the Waitkus property for the

duration of the project.

2.4 Deliverables Submitted

Annual QAQC Report

March, 1995 monthly report

Refinement Notice RN-084

INT-11 Area DNAPE Containment Wall Permeability Report

2.5 Upcoming/Ongoing Events and Activities

Daily safety meetings and inspections.

Daily safety awareness program.

Emphasis on multiple work assignments.

Emphasis on hazard identification and response.

Attention to safety details.

Respond to HAZOP audits.

Increase nutrient and oxygen circulation in specific INT areas.

Daily well pump checks and maintenance.

Aquifer compliance testing in select areas and zones.

Operate S1 and INT wells for expedited in-situ bioremediation.

Ship surplus equipment.

Injection of Cell D water.

Evaluate vegetation in Lagoon area.

Operate Data Base Management System.

Total Quality process.

Continue biological activity monitoring in S1 wells and INT wells.

Minimize carbon usage in Water Treatment Plant.

Develop lagoon closure plan.

Submit MCC-1 area remediation report.

Continue wetlands restoration project.

2.6 Key Staffing Changes

Reduce project support staff by two people.

2.7 Percent Complete

Research & Development	- 98%
Facilities	- 100%
Slough	- 100%
Subsoil Investigation	-100%
Floodwall	-100%
Lagoon Remediation	-100%
Groundwater	- 81%
Lagoon Dewatering/Fixation	- 100%
Water Treatment	- 78%
Wetlands	- 78%
Demobilization	- 65%
Monitoring	- 61%

2.8 Schedule

All deliverables are on schedule.

Complete wetlands construction by July 1, 1995.

Complete active aguifer remediation by January 1, 1996.

2.9 Operations and Monitoring Data

The operations and monitoring data are submitted as parts of Sections 3.0, 4.0, 5.0, and 6.0 of this report, and the supporting data are stored in secure storage at the French project office.

2.10 Credits Accrued/Applied

Status of Credits

	Accrued this period	Accrued to date	Applied this period	Applied to date	Running total
December 1990	34	34	0	0	34
December 1991	0	100	0	0	100
December 1992	0	101	0	2	99
December 1993	0	104	0	4	100
January 1994	0	104	0	4	100
February 1994	0	104	0	4	100
March 1994	0	104	0	4	100
April 1994	0	104	0	4	100
May 1994	0	104	0	4	100
June 1994	0	104	0	4	100
July 1994	5	109	0	4	105
August 1994	0	109	0	4	105
September 1994	0	109	0	4	105
October 1994	0	109	0	4	105
November 1994	0	109	0	4	105
December 1994	0	109	0	4	105
January 1995	0	109	0	4	105
February 1995	0	109	0	4	105
March 1995	0	109	0	4	105
April 1995	0	109	0	4	105

2.11 Community Relations

Maintained 24-hour, call-in Hot Line.

Conducted five site tours for interested parties.

Contacted nearby local residents with update on site activities.

Contacted several Riverdale residents with site status report.

Reviewed Barrett Station community development.

Supported Crosby Chamber of Commerce fund raising program.

Conducted site open house on April 27, 1995.

Issued project update.

3.0 LAGOON

3.1 Summary of Activities

Evaluating test plots of various plants in Cell E.

Added topsoil and re-graded areas to re-establish gradient from south to north. Hydro-mulched selected areas with a grass blend.

Injected about 146,000 gallons of "clean" Cell D water in Cell E subsurface.

Operated aerator in Cell D to expedite biomass degradation.

Evaluating various options for gradient control inside the lagoon.

Continued dismantling and disposal of scrap piping.

3.2 Problems and Response Action

	•				
<u>Problem</u>	Recommended Solution				
Ground cover growth slow in Cell E.	Hydroseed a rye grass blend. Water frequently. Evaluate different grass blends.				
Poor tree growth in Cell E.	Evaluate different types of trees. Design an irrigation system.				
3.3 Problems Resolved					
<u>Problem</u>	Recommended Solution				

Inject in Cell E subsurface.

Treat Cell D water.

3.4 Deliverables Submitted

None.

3.5 Upcoming Events and Activities

Maintain pH, DO, OUR, and nutrient levels in Cell D.

Operate aerator/mixer in Cell D as required.

Inject Cell D water in Cell E subsurface.

Hydroseed Cell E and Cell F as required.

Maintain vegetation in Cell E.

Dismantle and dispose of surplus pipe.

4.0 GROUNDWATER AND SUBSOIL REMEDIATION

4.1 Summary of Activities

4.1.1 Operation of Production and Injection Well Systems

Operation of the production and injection wells systems during April 1995 is summarized in Table 4-1. Flows from the production well system are summarized in Table 4-2 and Figure 4-1. Flows into the injection well system are summarized in Table 4-3 and Figure 4-2. Individual well flows are summarized in Table 4-4.

4.1.2 Operational Monitoring

Operational monitoring associated with the groundwater and subsoil remediation system during April, 1995, is summarized in Table 4-5. Results of the annual GW sampling have been issued to the EPA and placed in the appropriate repositories.

4.1.3 Data Management and Evaluation

Operational monitoring data from the groundwater and subsoil remediation system for this reporting period were entered into FLTG's database. Tables and figures for this section of the Monthly Progress Report were generated from this database.

4.2 Problems and Response Actions

Groundwater production and injection rates were at or above the targets of both production and injection wells. The new goal for production well rates is 90 gpm. See Table 4-1. Nutrient and dissolved oxygen concentrations in injection water were at or close to target levels. No specific response action is planned.

Table 4-1

Groundwater System Operation - April 1995 Reporting Period: April 1-30 (30 days)

Production System

No. of production wells: 113 (S1 unit, 53; INT unit, 60)

No. of operational wells by end of month: 60 (S1 unit, 16; INT unit, 44)

Changes in system since last month: complete INT-229, -230 as prod. well

No. of wells off line having reached criteria: 37

16 wells off inside lagoon

Groundwater produced: 5.0 M gal; 252.0 M gal since startup based on main meter

Total production rate: avg. 94 gpm (target 90 gpm); range 93-117 gpm

S1 production rate: avg. 48.1 gpm; avg. 3.0 gpm per metered well

INT production rate: avg. 45.9 gpm; avg. 1.0 gpm per metered well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows

based on 30 days operation

TOC (non-volatile) concentration avg. 41 ppm; range 31-58 ppm

TOC mass removed: 1,706 lb. (367,771 lb. since startup); 57 lb./day

Injection System

No. of injection wells: 66 (S1 unit, 20 [12 on line]; INT unit, 46 [31 on line])

Rainfall during period: 1.39 inches

Changes in system since last month: converted S1-18 to injection

Groundwater injected: 5.8 M gal (150.2 M gal since startup) based on main meters

S1 unit injected: 3.4 M gal (82.5 M gal since startup)

INT unit injected: 2.4 M gal (67.7 M gal since startup)

Total injection rate: avg. 134 gpm (target 100 gpm); range 113-149 gpm

S1 injection rate: avg. 47.5 gpm; avg. 4.0 gpm per well INT injection rate: avg. 56.5 gpm; avg. 1.8 gpm per well

Total flow rate apportioned between S1 and INT units based on individual well meter readings; average flows

based on 30 days operation

Oxygen added to injection water: 9,905 lb.; 330.2 lb./day used (input efficiency = 20%) Avg. DO in injection water: S1, 33.4 ppm; INT, 48.0 ppm (target 40 ppm) \Rightarrow 66.5 lb./day

Volume of 9.1% w/w KNO₃ nutrient solution added to INT unit, and 2 S1-North wells:

9.076 gal

Nutrient flow rate: 302.5 gpd; 0.25% of INT + S1-North inflow rate (target 0.38%)

Calculated injection water NO₃ concentration: 64.1 mg/L-N (target 50 mg/L-N)

Note that average monthly flow rates at individual wells (calculated from weekly individual well flow meter readings) are not used directly to determine S1 and INT unit inflows and outflows, but are used to apportion total production and injection flows (calculated from daily main production and injection meter readings) between S1 and INT units. Average flows are based on the 30 day reporting period.

Table 4-2

Daily Groundwater Production and TOC Removal
April 1995

Date	Project					
	Day	T-101 Outflow Rate (FQ-101A)	T-101 Outflow Rate	T-101 Influent Ave. TOC	T-101 Influent TOC Loading	
i		(gpd)	(gpm)	(mg/L)	(kg/day)	
1-Apr	1179	154,500	107	33	19	
2-Apr	1180	146,000	101	34	19	
3-Apr	1181	152,000	106	45	26	
4-Apr	1182	162,200	113	28	17	
5-Apr	1183	158,300	110	36	22	
6-Apr	1184	168,400	117	48	31	
7-Apr	1185	163,900	114	46	29	
8-Apr	1186	152,100	106	38	22	
9-Apr	1187	149,400	104	53	30	
10-Apr	1188	146,000	101	37	20	
11-Apr	1189	143,700	100	38	21	
12-Apr	1190	141,000	98	37	20	
13-Apr	1191	151,000	105	58	33	
14-Apr	1192	145,700	101	40	22	
15-Apr	1193	139,200	97	40	21	
16-Apr	1194	137,200	95	38	20	
17-Apr	1195	139,100	97	33	17	
18-Apr	1196	145,100	101	45	25	
19-Apr	1197	146,600	102	37	21	
20-Apr	1198 📒	144,700	100	37	20	
21-Apr	1199	146,100	101	38	21	
22-Apr	1200	143,900	100	38	21	
23-Apr	1201	139,800	97	38	20	
24-Apr	1202	139,400	97	33	17	
25-Apr	1203	137,800	96	34	18	
26-Apr	1204	136,000	94	31	16	
27-Apr	1205	136,300	95	41	21	
28-Apr	1206	134,600	93	39	20	
29-Apr	1207	137,300	95	35	18	
30-Apr	1208	144,200	100	39	21	
Month Average		155,956	108	41	24	
Month Total		4,990,600		1706 lbs.	766	

Table 4-3

Daily Injection Flows

April 1995

		ואו	uuu								
		INT-90		INT	North						
Date	Project	S1 No	rth	(not INT-90/100)		S1 South		Total			
	Day	Injection	Wells	•	n Wells	Injection	Wells	Injection		Oxygen	Nutrients
	·	FQ90)5	Meter f	FQ-906 Meter FQ-909		Rate		,,,	F A	
		(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	(gpd)	(gpm)	lbs	Gallons
1-Apr	1179	39,700	28	46,800	33	126,200	88	212,700	148	400	293
2-Apr	1180	37,100	26	44,500	31	119,900	83	201,500	140	300	289
3-Apr	1181	38,500	27	46,900	33	126,200	88	211,600	147	300	300
4-Apr	1182	38,200 ⁽	27	45,600	32	126,900	88	210,700	146	300	289
5-Apr	1183	39,600	28	46,700	32	128,400	89	214,700	149	320	285
6-Apr	1184	41,000	28	41,500	29	130,700	91	213,200	148	320	296
7-Apr	1185	41,100	29	35,600	25	128,800	89	205,500	143	360	312
8-Apr	1186	42,000	29	35,900	25	130,400	91	208,300	145	300	262
9-Apr	1187	41,600	29	35,700	25	129,300	90	206,600	143	400	338
10-Apr	1188	40,000	28	40,200	28	125,000	87	205,200	143	300	312
11-Apr	1189	41,200	29	43,500	30	122,200	85	206,900	144	295	312
12-Apr	1190	41,800	29	44,300	31	118,700	82	204,800	142	300	308
13-Apr	1191	41,400	29	40,200	28	111,500	77	193,100	134	380	300
14-Apr	1192	39,100	27	39,400	27	113,100	79	191,600	133	280	291
15-Apr	1193	35,700	25	40,900	28	106,800	74	183,400	127	340	285
16-Apr	1194	34,600	24	39,900	28	103,100	72	177,600	123	300	323
17-Apr	1195	35,200	24	40,200	28	106,800	74	182,200	127	300	308
18-Apr	1196	38,600	27	41,900	29	109,300	76	189,800	132	395	293
19-Арг	1197	38,100	26	42,300	29	114,700	80	195,100	135	300	239
20-Apr	1198	39,800	28	42,600	30	114,600	80	197,000	137	300	251
21-Apr	1199	40,900	28	42,100	29	113,500	79	196,500	136	280	292
22-Apr	1200	42,100	29	43,900	30	105,800	73	191,800	133	300	334
23-Apr	1201	41,700	29	44,400	31	100,400	70	186,500	130	360	307
24-Apr	1202	41,700	29	42,300	29	107,300	75	191,300	133	200	346
25-Apr	1203	41,300	29	40,600	28	101,600	71	183,500	127	400	327
26-Apr	1204	40,800	28	29,700	21	92,200	64	162,700	113	600	331
27-Apr	1205	40,300	28	38,900	27	88,700	62	167,900	117	295	312
28-Apr	1206	40,300	28	39,000	27	85,100	59	164,400	114	300	307
29-Apr	1207	43,000	30	41,300	29	89,400	62	173,700	121	360	312
30-Apr	1208	43,100	30	41,500	29	95,100	66	179,700	125	320	322
Month Av	verage	39,983	28	41,277	29	112,390	78	193,650	134	330	303
Month To	Month Total 1,199,500			1,238,300		3,371,700		5,809,500		9,905	9,076

Table 4-4

Average Production and Injection Flow Rates - April, 1995

S1 Prod	luction Welle (Flow rates are everages 16) S1 Injection Welle (1)	for the period April 1 - April 2) INT Producti	ii 30 (30 daya) on Wells (44)	INT Injectio	n Welle (31)
Well ID	gpm	Well ID gpm	Well iD	gpm	Well ID	gpm
S1-1	OFF	\$1-18 2.0	INT-1	1.2	INT-63	1,1
S1-2	OFF	\$1-48 OFF	INT-2	0.8	INT-64	3.3
\$1-3	OFF	\$1-50 OFF	INT-3	0.2	INT-71	2.2
\$1-4	OFF	S1-51 OFF	INT-4	0.2	INT-72	1.1
S1-6	OFF	\$1-52 OFF	INT-5	1.7	INT-73	3.1
S1-6	OFF	\$1-63 OFF	INT-8	0.3	INT-74	1.8
S1-7	OFF	\$1-64 4.4	NT-7	0.2	INT-75	0.7
S1-8	OFF	\$1-65 2.2	INT-8	1.5	INT-76	2.6
S1-9	OFF	\$1-56 OFF	INT-9	1.2	INT-77	3.9
S1-10	OFF	S1-67 OFF	INT-10	3.6	INT-78	3.8
S1-11	OFF	\$1-58 OFF	{ INT-11	0.5	INT-79	0.6
S1-12	OFF	S1-69 2.9	INT-12	1.4	INT-80	1.0
S1-13	OFF	\$1-65 5.5	INT-13	0.3	INT-81	5.1
S1-14	OFF .	S1-68 4.6	INT-14	OFF	INT-82	0.5
S1-15	OFF ;	S1-67 6.1	INT-16	OFF	INT-83	0.5
S1-16	OFF	\$1-68 5.0	INT-16	OFF	INT-84	2.0
S1-17	1.7	\$1-69 3.2	[INT-17_	OFF	INT-85	OFF
S1-19	2.8	\$1-70 2.9	INT-18	OFF	INT-86	OFF
S1-20	2.2	51-101 2.4	INT-19	0.2	INT-87	OFF
S1-21	10.1	<u>\$1-133</u> 6.3	INT-20	0.2	INT-88	OFF
S1-22	1.2		INT-21	0.5	INT-89	OFF
S1-23	OFF .	Total 47.5	INT-22	0.2	INT-90	OF#
S1-24	OFF ₹	1_1_	INT-23	0.1	INT-91	OFF
S1-25	1.1		INT-24	0.5	INT-92	OFF
S1-26	5.4	Average 4.0	INT-25	OFF	INT-93	OFF
S1-27	1.2		INT-26	0.5	INT-94	OFF
S1-28	4.7		INT-27	1.5	INT-95	OFF
S1-29	1.7	Wellin S1-18 and S1-13		0.4	INT-96	OFF
S1-30	3.5	receive oxygen and	INT-29	OFF	INT-97	1.7
S1-31	OFF	nutrient emended	INT-30	OFF	INT-98	1.8
S1-32	3.3	injection water	INT-31	OFF	INT-99	OFF
S1-33	OFF	Subtotal 8.3	INT-32	OFF	INT-100	OFF
51-34	OFF (INT-33	OFF	INT-201	OFF
51-35	OFF	All other S1 wells recei		2.2	INT-202	1.1
S1-38	OFF	oxygenated injection	INT-56	0.6	INT-203	0.4
S1-37	OFF	water only	INT-67	1.7	INT-204	1.7
S1-38	OFF		INT-58	2.7	INT-218	2.1
S1-39	OFF :]	INT-69	0.3	INT-219	1.7
S1-40	OFF ;		INT-60	1.9	INT-220	0.5
S1-41	OFF '	t	INT-61	1.4	INT-221	0.8
S1-42	OFF :		INT-62	0.6	INT-222	3.9
S1-43	OFF	1	INT-85	OFF	INT-223	1.5
S1-44	OFF	†	INT-66	OFF	INT-224	2.0
S1-45	OFF	1	INT-143	0.2	INT-225	3.4
\$1-46	OFF		INT-206	1.1	INT-228	0.3
S1-47	OFF	1	INT-206	0.7	INT-227	0.3
S1-48	OFF		INT-207	0.9		
\$1-60	OFF]	INT-208	4.0	Total	56.5
S1-61	0.4]	INT-208	0.2	''	l
S1-62	5.2	1	INT-210	1.5	 	_
S1-83	2.0	1	INT-211	OFF	Average	1.8
S1-64	0.6	1	INT-212	1.8		i
	1	1	INT-213	1.3		
Total	48.1		INT-214	OFF	All INT injects	no weile
		1	INT-215	2.7	receive oxyge	
Notes INT-216 OFF			nutrient-amen			
Average*	3.0	OFF - well inoperative	INT-217	2.0	injection wate	
		NM - well running but not me		0.1	Injection wate	<u>. </u>
		SB well intering out for the	"41-220	ı "'		

Note: total and average flow rates for S1 and INT units are corrected four main flow mater readings for use in Table 4-1

0.4

45.9

INT-229 INT-230

Total

Table 4-5
Operational Monitoring - April 1995

Activity	Frequency	Purpose		
Check production and injection wells for pump, meter, and level control operation, injection pressure, and gas buildup.	Daily	Identify and respond to individual well problems; maintain operating efficiency.		
Flow meter readings	Weekly	Identify and respond to individual well problems; maintain operating efficiency.		
Read groundwater treatment plant in- flow and outflow meters; nutrient injec- tion flow meters; oxygen flows, pressure and temperature; and injection header back pressure.	2x daily	Identify and respond to treatment plant problems; control nutrient and injection flow rates.		
Measure T-101 influent TOC.	2x daily	Track TOC removal.		
Measure dissolved oxygen at 6 representative S1 and INT injection wells.	Weekly	Control oxygen injection.		
Conduct water levels DO and TOC on 22 monitoring wells.	Weekly	Define progress of new INT wells and shut-off areas. Track DO breakthru.		
Conduct water levels on shut-off wells.	Monthly	Track level recovery in shut-off wells.		
Conduct TOC and DO on select production wells.	Weekly	Track TOC and DO levels in critical areas.		

Figure 4-1
Production Flows

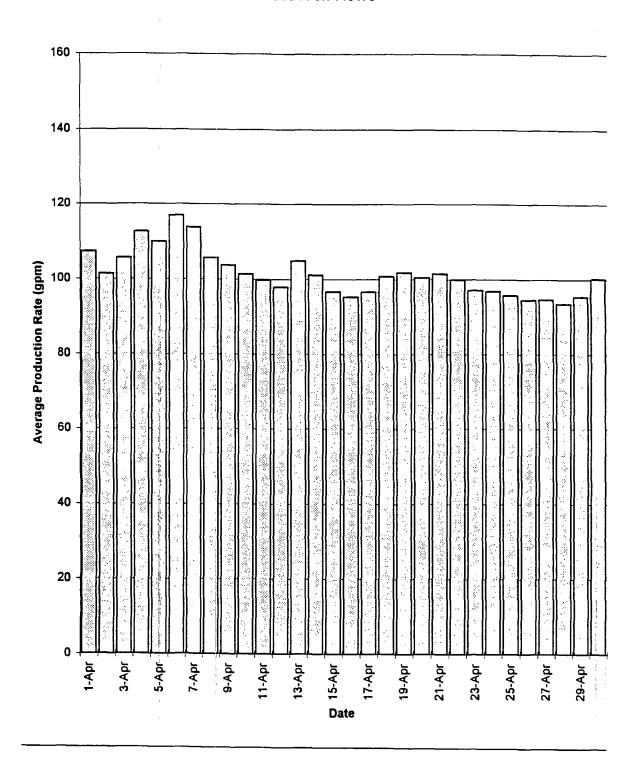
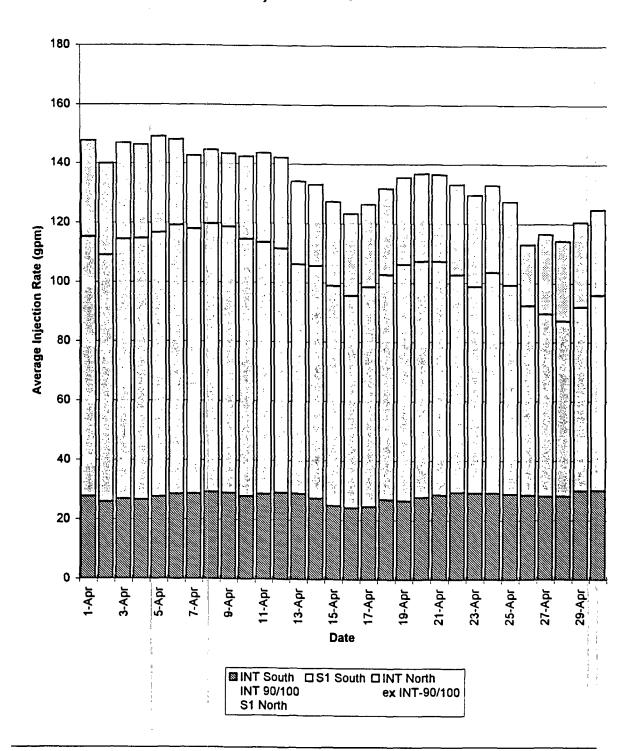



Figure 4-2
Injection Flows

4.3 Pending Issues

4.3.1 S1 Unit Pulse Pumping

No wells are on a pulse pump program this period.

4.4 Operational Refinements

S1-18, INT-14, INT-18, INT-65, INT-66 added to shut-off list for meeting criteria. S1-18 converted to an injection well.

4.5 Data Summary and Discussion

4.5.1 Groundwater Production and Injection

Groundwater production rates were adjusted to 90 gpm to compensate for the expanded shut-off. Injection rate target remains the same.

4.5.2 Groundwater Levels and Flow Directions

The current extent of contaminated groundwater is contained within the S1 and INT extraction system capture zones.

Water level contour maps are presented on a quarterly basis.

4.5.3 TOC in shallow groundwater

TOC analyses on production wells were completed the first week in April. The analyses are in Table 4-7 and Table 4-8. The overall average TOC level continues to drop.

4.5.4 In-Situ Bioremediation

Complimentary injection wells were shut off to balance production wells reaching criteria. The emphasis continues to be to maximize delivery of oxygen and nutrients to the INT system. Dissolved oxygen analysis was conducted on the monitoring wells during the third well volume pumped.

A work plan was developed for natural attenuation modeling and submitted to USEPA.

Three Biological Activity Monitors (BAM) were installed in each of 11 S1 monitoring wells and 14 INT monitoring wells during the first week of March. Coupons were incubated for 26 days and replaced for the fourth incubation period beginning in May. The data for both sets of coupons are summarized in Table 4-6. The mean activity for the system was generally constant for the S1 zone but decreased in the

French Ltd. Project

MONTHLY PROGRESS REPORT Groundwater and Subsoil Remediation

FLTG, Incorporated

INT zone. Variation between coupons in the same well remains low and consistent with previous monitoring periods in both zones.

Figure 4-3 shows activity in the S1 zone during the past 90 days. Activity continued to increase at the east end, outside the flood wall (130, 131) but decreased just across the flood wall (126). The population also decreased sharply in ERT-9A. Overall activity decreased moderately in most of the other S1 wells.

Activity in the INT zone during the last 90 day period is shown in Figure 4-4. Activity was fairly uniform throughout the central zone during April but increased significantly in six (6) out of seven (7) wells in the western region in April. Inside the flood wall, activity decreased in all three (3) wells in April. The mean for the period was similar to the previous period and lower than the initial readings in February. Improved release of organic carbon following the sand fracturing may be responsible, at least in part, for the consistent, across-the-board, increase in activity in the INT west end wells during the last 30-day period. Changes of this magnitude were generally not observed at other INT locations.

The fourth series of coupons were installed the first week of May and will be harvested at the end of the month.

Now that we have three data points for each well, some trends may be emerging that appear to affirm anticipated trends. Although the decreased populations in the two inside wells was unexpected. Some consistent trends are:

Decreased activity	<u>Increased activity</u>
S1 ERT-9A (Central)	S1-130 (East end)
S1-123 (Central)	S1-131 (East end)
S1-126 (Inside)	
1	
INT-102 (Central)	INT-105 (Central)
INT-129 (Inside)	INT-106 (Central)
i	

4.6 Schedule

Preparing to vacuum enhance INT-228 and -230.

Table 4-6
Biological Activity Monitor Results and Statistics

	WELLS	* * * * * * * * *	****MEAN***	* * * * * * * * *
LOCATION	WELL	FEB	MAR	APR
CENTRAL	106	0.46	0.71	0.61
	108	0.46	0.71	0.81
CENTRAL	121	0.66	0.27	0.37
CENTRAL CENTRAL	123	1.05	0.69	0.42
			0.69	0.43
WEST	110	0.46		
WEST	#12	0.38	0.18	0.39
INSIDE	ERT-9A	6.24	2.34	0.65
INSIDE	P-6	0.84	1.29	0.94
INSIDE	126	1.58	1.31	0.59
EAST	130	0.51	1.83	1.97
EAST	131	1.24	2.83	7.85
MEAN	i	1.27	1.11	1.33
	NATI LO			\$
INT MONITOR	(WELLS			
	1	*******	* * * * N A E A D * * *	*****
LOCATION	NASES S	*******	****MEAN***	**************************************
LOCATION	WELL	**************************************	MAR	********** APR
WEST	134	0.44	MAR 0.12	0.37
WEST WEST	134 1 ¹ 13	0.44 0.65	MAR 0.12 0.13	0.37 0.86
WEST WEST WEST	134 113 112	0.44 0.65 0.57	MAR 0.12 0.13 0.19	0.37 0.86 0.51
WEST WEST WEST WEST	134 113 112 111	0.44 0.65 0.57 0.50	MAR 0.12 0.13 0.19 0.76	0.37 0.86 0.51 0.46
WEST WEST WEST WEST	134 113 112 111 101	0.44 0.65 0.57 0.50 0.38	MAR 0.12 0.13 0.19 0.76 0.21	0.37 0.86 0.51 0.46 0.37
WEST WEST WEST WEST WEST	134 113 112 111 101 W-3	0.44 0.65 0.57 0.50 0.38 0.60	MAR 0.12 0.13 0.19 0.76 0.21 0.11	0.37 0.86 0.51 0.46 0.37 0.37
WEST WEST WEST WEST WEST WEST WEST	134 113 112 111 101 W-3 REI-10-3	0.44 0.65 0.57 0.50 0.38 0.60 1.18	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20	0.37 0.86 0.51 0.46 0.37 0.37
WEST WEST WEST WEST WEST WEST WEST INSIDE	134 113 112 111 101 W-3 REI-10-3 131	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72	0.37 0.86 0.51 0.46 0.37 0.37 0.51
WEST WEST WEST WEST WEST WEST WEST INSIDE	134 113 112 111 101 W-3 REI-10-3 131 129	0.44 0.65 0.57 0.50 0.38 0.60 1.18	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20	0.37 0.86 0.51 0.46 0.37 0.37 0.51
WEST WEST WEST WEST WEST WEST WEST INSIDE	134 113 112 111 101 W-3 REI-10-3 131	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72	0.37 0.86 0.51 0.46 0.37 0.51 0.37 0.53
WEST WEST WEST WEST WEST WEST WEST INSIDE	134 113 112 111 101 W-3 REI-10-3 131 129	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48 0.76	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72 0.63	0.37 0.86 0.51 0.46 0.37 0.37 0.51 0.53 0.53
WEST WEST WEST WEST WEST WEST INSIDE INSIDE	134 113 112 111 101 W-3 REI-10-3 131 129	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48 0.76	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72 0.63 0.96	0.37 0.86 0.51 0.46 0.37 0.51 0.37 0.53
WEST WEST WEST WEST WEST WEST INSIDE INSIDE INSIDE CENTRAL	134 113 112 111 101 W-3 REI-10-3 131 129 W-7	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48 0.76 0.75	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72 0.63 0.96 0.41	0.37 0.86 0.51 0.46 0.37 0.51 0.37 0.53 0.53
WEST WEST WEST WEST WEST WEST INSIDE INSIDE INSIDE CENTRAL CENTRAL	134 113 112 111 101 W-3 REI-10-3 131 129 W-7	0.44 0.65 0.57 0.50 0.38 0.60 1.18 0.48 0.76 0.75 0.54 0.36	MAR 0.12 0.13 0.19 0.76 0.21 0.11 0.20 0.72 0.63 0.96 0.41 0.37	0.37 0.86 0.51 0.46 0.37 0.51 0.53 0.53 0.45 0.48

Figure 4-3

Coupon HMB Values for S1 Zone

1995 BAM PROGRAM, FRENCH LTD. PROJECT

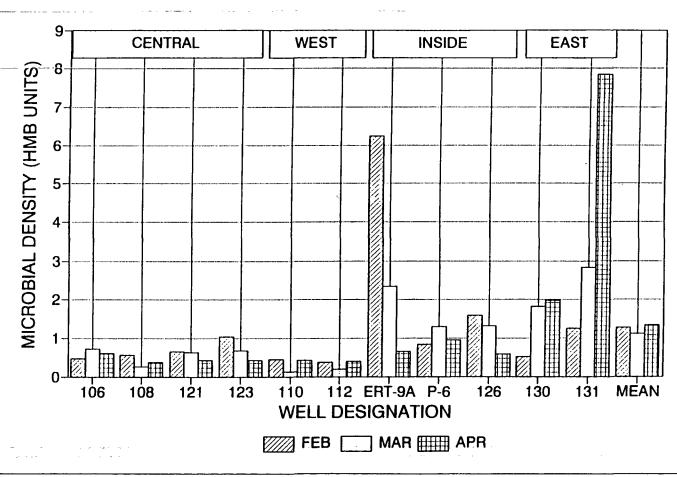


Figure 4-4

Coupon HMB Values for INT Zone
1995 BAM PROGRAM, FRENCH LTD. PROJECT

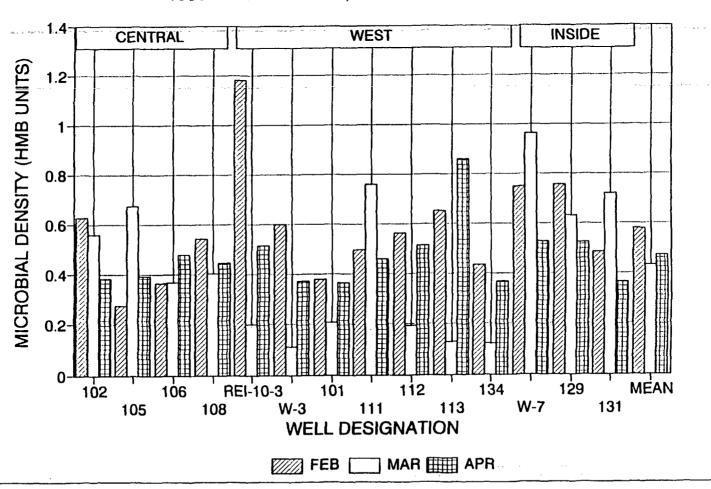


Table 4-7

			.czopy	05.700						
i		н			UCTION	WELLS	ONS			
Weil	Baseline	Mar	June	Sep	Nov	Dec	Jan	Feb	Mar	Apr
ID	Nov-Dec 91	1994	1994	1994	1994	1994	1995	1995	1995	1995
S1-1	(ppm) 290	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
S1-2	290 190	1,317 1,510	1,360	1,133 1,251	1,215 NS	NS NS	1,592 1,044	NS	NS	NS
S1-3	370	1.037	755	566	750	NS NS	624	NS NS	NS NS	NS NS
S1-4	47	1,025	668	620	576	NS	582	NS	NS	NS
S1-5	51	1,151	473	NS	NS	NS	504	NS	NS	NS
S1-6	51	1,315	892	928	NS	NS	774	NS	NS	NS
S1-7	200	1,327	786	660	NS	NS	708	NS	NS	NS
S1-8	64	1,516	1,110	935	909	NS I	708	NS	NS	NS
\$1-9	77	2.085	1,589	567	NS	NS	1,520	N\$	NS	NS
S1-10 S1-11	46 120	2,540	1,800	567	2,001	NS	2,205	1,860	448	1680
S1-12	140	NS 2,129	1,751 1,445	2,510 2,355	1,825 1.086	NS NS	2,121 1,850	2,320 1,960	40 344	1608
51-13	520	990	722	1.077	960	NS NS	678	820	312	105
S1-14	590	1,616	1,443	1,440	1,000	NS	1,392	1,430	592	1340
\$1-15	5,300	2.778	2,280	2,583	1,450	NS	2,597	2,530	1,488	3059
\$1-16	8,900	2,732	718	NS	1,744	NS	1,050	330	136	288
S1-17	6,800	344	180	141	92	NS	73	76	72	46
S1-18	2,200	44	34	49	45	NS	24	37	72	23
\$1-19 \$1-20	20	33	28	39	22	NS	14	16	32	18
S1-20	120 65	141	50 8	60 42	43 11	NS	21	16	17	6
S1-22	290	4	19	64	31	NS NS	6 30	3 55	11 NS	15 199
S1-23	350	27	21	29	20	NS	13	12	NS	7
\$1-24	250	16	18	42	17	NS	13	10	NS	19
\$1-25	550	16	15	33	23	NS	13	13	NS	10
S1-26	540	22	18	49	16	NS	14	11	NS	10
S1-27	220	60	42	88	128	NS ·	25	31	NS	24
S1-28	370	12	15	21	18	NS	14	16	NS	10
S1-29	670	23	20	33	20	NS	16	11	NS	23
\$1-30 \$1-31	370 14	† 78 : 29	31 17	88	28	NS	20	22	NS	15
\$1-32	18	85	49	29 73	25 40	NS NS	12 35	11 37	NS 41	NS TO
S1-33	10	16	NS	567	NS	NS NS	NS	NS	NS	73 NS
S1-34	11	75	13	18	NS	NS	NS	NS	NS	NS NS
S1-35	24	45	43	37	NS	NS	28	NS	NS	NS
S1-36	200	44	27	39	NS I	NS :	NS	NS	NS	NS
S1-37	13	55	9	36	NS	NS	NS	NS	NS	NS
S1-38	59	6	NS	22	NS	NS	NS	NS	NS	NS
\$1-39 \$1-40	290 150	22 33	11	17	NS	NS	10	12	NS	NS
S1-41	170	12	15 11	17 16	18 NS	NS NS	18 10	21 16	NS NS	NS NS
S1-42	88	37	NS :	22	NS	NS	NS	NS	NS NS	NS NS
S1-43	4	NS	NS	14	NS	NS	NS	NS	NS	NS NS
S1-44	280	: 44	21	28	NS	NS	9	19	NS	NS
S1-45	4,400	30	NS	24	NS	NS	10	32	NS	NS
\$1-46	480	. 10	NS :	24	10	NS	4	11	NS	NS
S1-47	1,200	61	NS	31	NS	NS	24	28	NS	NS
\$1-48	1,200	. 31	NS	22	NS	NS	15	22	NS	NS
\$1-60 \$1-61	48 No	15	NS 750	17	NS	NS	8	14	NS	NS
S1-61	NS NS	NS NS	758 125	368 27	152 18	NS	78 20	116	108	63
S1-62	NS	NS NS	264	241	150	NS NS	155	14 120	11 70	3 47
S1-64	NS	NS	512	66	55	NS	44	50	43	61
NS = Not									70	ויט

NS = Not Sampled

Table 4-8

	HISTORY OF TOC CONCENTRATIONS AT INT PRODUCTION WELLS											
Well	Baseline	Mar	June	Sep	Nov	Dec	Jan	Feb	Mar	Apr		
ID	Nov-Dec 91	1994	1994	1994	1994	1994	1995	1995	1995	1995		
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		
1NT-1	3,600	800	374	320	253	NS	204	270	273	369		
INT-2	1,800	290	339	281	214	NS	91	492	563	253		
INT-3 (NT-4	5,200	1,188	1,260	932	1,550	NS	1,016	940	624	551		
INT-5	610 960	1,300	541 101	430	NS 90	NS	198 76	180	209	229		
INT-6	280	510	200	103 195	100	NS NS	76	70 72	45 46	87		
INT-7	100	99	140	101	38	NS	120	123	NS	65 116		
INT-8	75	84	60	64	43	NS	47	45	NS	47		
INT-9	800	142	77	70	NS	NS	68	58	NS	72		
INT-10	1,900	112	62	82	135	NS	45	45	20	55		
INT-11	590	NS	44	113	31	NS	31	27	29	50.4		
INT-12	3,300	106	105	74	23	NS	32	16	31	72		
INT-13	590	63	89	50	23	NS	34	12	NS :	11		
INT-14	24	112	NS	119	53	NS	39	50	54	0		
INT-15	19	20	19	47	18	NS	17	16	NS	NS		
INT-16	2,000	15	11	68	9	NS	6	11	NS	NS		
INT-17	7	13	NS	19	14	NS	8	14	NS	NS		
INT-18	1,400	162 55	73 36	57	29	NS	24	20	31	35		
INT-20	3,500	2,525	1,922	38 1,182	39 NS	NS NS	56 1,480	49	NS 1.435	38		
INT-21	29	240	214	190	NS	NS	204	1,476 132	1,425 540	998 188		
INT-22	8	- 55	44	95	NS	NS	117	135	199	160		
INT-23	16	40	50	112	NS	NS	35	40	30	NS		
INT-24	240	136	89	84	65	NS	58	58	NS	47		
INT-25	36	65	24	29	NS	NS .	20	18	NS	NS		
INT-26	120	152	38	122	123	NS	110	108	NS I	107		
INT-27	180	116	85	79	80	NS	65	75	NS	65		
INT-28	630	48	34	37	23	NS	22	26	NS :	47		
INT-29	1,100	104	65	76	58	NS	35	40	NS	NS		
INT-30 INT-31	1,400	: 32	32	45	24	NS	27	20	NS .	NS		
INT-31	70 880	52	25	82	30	NS	20	19	NS	NS		
INT-33	120	16 255	24 47	22	11 17	NS	12	16	NS	NS		
INT-55	NS	115	98	20 122	61	NS NS	10 65	9 48	NS NS	NS 78		
INT-56	NS	925	435	297	146	NS	132	120	NS	131		
INT-57	NS	40	61	66	51	NS	75	68	NS	55		
INT-58	NS	76	46	34	33	NS	28	29	NS	26		
INT-59	NS	115	77	79	49	NS	50	42	NS	61		
INT-60	NS	195	118	110	85	NS	86	80	NS	90		
INT-61	NS	95	48	39	40	NS	31	31	NS	32		
INT-62	NS	100	38	35	43	NS	29	20	NS	28		
INT-65	NS	NS	65	68	61	NS	51	41	NS	50		
INT-66	NS	175	113	120	94	NS	94	85	NS	51		
INT-205	NS NS	120	39	61	39	NS	34	34	NS	50		
INT-200	NS NS	. 44 . 56	53 52	107 45	86 60	NS	68 74	60	NS oc	51.5		
INT-208	NS	20	38	22	16	NS NS	11	92 18	95 NS	100.1 16		
NT-209	NS	52	43	37	19	NS	13	17	NS NS	5		
INT-210		24	22	27	28	NS	23	26	NS	28		
INT-211	NS	88	57	43	46	NS	29	41	NS	NS		
INT-212		NS	36	27	38	NS	41	38	NS	69		
INT-213	NS	NS	36	83	70	NS	91	143	NS	89		
INT-214		NS	35	46	31	NS	22	26	NS	NS		
INT-215	NS	NS	170	82	82	NS	56	67	NS	43		
INT-216	NS	NS	22	34	28	NS	26	34	NS	NS		
INT-217	NS	NS I	62	66	61	NS	60	62	NS	75		
NS = Not												
Averages												
S1 INT	784 957	565 236	484 148	387	439	NS	451	336	226	337 111		
				125	89	NS	100	105	263			

Table 4-9

Dissolved	Oxygen	at Producti	on Wells

	Well	9/1/94	AAGOGGA		tion we	
	S1-1		11/23/94	1/1/95	3/26/95	4/5/95
Ì		2.1	0.8	1.6	NM	NM
	S1-2	1.7	1.6	1.1	NM	NM
i	S1-3	1.8	1.0	1.1	NM	NM
Į	S1-4	2.0	0.8	0.9	NM	NM
	S1-5	NM	NM	1.6	NM	NM
1	S1-6	1.6	NM	0.8	NM	NM
	S1-7	1.3	NM	1.2	NM	NM
	S1-8	1.1	0.7	8.0	NM	NM
	S1-9	0.8	NM	1,5	NM	NM
1	S1-10	0.6	0.5	1.0	NM	0.9
	S1-11	1.1	0.9	1.4	NM	0.8
i	S1-12	1.1	1.3	1.5	NM	1.4
Ì	S1-13	1.7	1.3	1.5	NM	0.7
	S1-14	1.1	0.4	0.8	NM	0.8
	S1-15	1.4	0.7	0.7	NM	0.9
	S1-16	NM	1.2	2.9	NM	2.7
	S1-17	1.2	0.8	1.4	NM	1.7
ļ	S1-18	2.4	1.4	2.2	NM	6.8
1	S1-19	3.4	3.9	6.6	NM	6.5
	S1-20 -	1.6	1.7	3.2	NM	13.0
1	S1-21	15+	15+	15+	NM	13.6
į	S1-22	1.5	0.7	1.6	NM	1.8
	S1-23	1.9	1.5	4.8	NM	15.0
	S1-24	0.9	2.6	1.8	NM	2.4
	S1-25	0.8	0.8	1.4	NM	2.2
1	S1-26	2.2	0.7	1,1	NM	1.4
į	S1-27	1.4	1.9	2.0	NM	1.9
	S1-28	1.2	1.2	1.7	NM	5.0
	S1-29	1.9	2.2	4.4	NM	2.5
	S1-30	1.5	1.1	4.2	NM	1.8
	S1-31	1.8	1.6	1.2	NM	NM
	S1-32	1.4	1.5	1.8		
1	S1-32	1.4	NM	NM	0.6 NM	2.2
	S1-34	1.2	NM			NM
	S1-35	1.7	3	NM	NM	NM
	S1-35	0.9	NM NM	1.5	NM	NM
1	S1-36 S1-37	1.3	ł	NM	NM	NM
	S1-37 S1-38	1.3 15+	NM	NM	NM	NM
	S1-30		NM 2.0	NM	NM	NM
٠ (S1-39 S1-40	1.3	2.9	3.2	NM	NM
		2.2	1.0	2.0	NM	NM
	S1-41	1.0	1.0	1.4	NM	NM
	S1-42	14.0	NM	NM	NM	NM
1	S1-43	2.2	NM	NM	NM	NM
١	S1-44	1.8	6.0	1.8	NM	NM
r	S1-45	2.9	2.3	5.1	NM	NM
"	S1-46	13.5	15+	15+	NM	NM
٠	S1-47	9.6	8.7	5.4	NM	NM
1	S1-48	5.3	4.2	5.0	NM	NM
	S1-60	6.1	4.4	5.6	NM	NM
1	S1-61	1.1	8.0	1.2	0.8	2.0
٠.	S1-62	1.4	2.8	12.6	NM	15.0
	S1-63	2.2	0.9	4.0	0.9	4.2
I	S1-64	2.4	1.8	4.1	0.9	15.0

Table 4-9 (Continued)

Dissolved Oxygen at Production Wells

_	Dissolved Oxygen at Production Wells											
L	Well	9/1/94	11/23/94	1/1/95	3/26/95	4/5/95						
	INT-1	1.1	1.4	3.0	1.0	1.2						
1	INT-2	1.5	0.8	0.8	0.4	1.4						
	INT-3	1.0	1.0	1.4	0.4	1.7						
1	INT-4	0.9	1,1	1.2	0.5	1.0						
	INT-5	2.3	1.1	1.0	1.0	1.8						
	INT-6	0.7	1.3	1.4	1.0	1.4						
1	INT-7	1.5	1.0	0.6	NM	0.9						
1	INT-8	1.8	1.0	1.9	NM !	1.4						
1	INT-9	1.2	NM	1.4	NM	1.8						
1	INT-10	1.9	1.4	1.7	0.8	2.4						
1	INT-11	1.1	2.2	3.4	3.3	7.6						
	INT-12	2.2	13.8	13.8	15 +	15.0						
	INT-13	0.9	7.8	1.6	NM	2.7						
1	INT-14	1.8	1.7	1.7	0.7	2.4						
1	INT-15	1.4	1.6	2.0	NM	NM						
1	INT-16	2.1	3.0	1.8	NM	NM						
	INT-17	2.9	2.2	2.6	NM	NM						
	INT-18	1.8	1.2	1.5	NM	1.2						
	INT-19	2.4	1.4	1.1	NM	1.3						
	INT-20	1.3	0.9	1.2	0.5	1.3						
	INT-21	1.7	2.6	3.0	0.5	0.9						
	INT-22	0.8	1.0	1.1	0.6	2.1						
1	INT-23	1.1	2.4	2.3	NM	NM						
	INT-24	1.8	2.0	2.6	NM	1.8						
1	INT-25	12.5	15+	10.2	NM	NM						
1	INT-26	1.4	1.6	2.3	NM	1.7						
]	INT-27	1.6	1.2	1.4	NM	1.2						
1	INT-28	5.2	7.4	4.6	NM	1.0						
	INT-29	5.2	4.0	4.4	NM	NM						
İ	INT-30	9.5	9.4	1.8	NM	NM						
1	INT-31	1.4	4.1	5.3	NM	NM						
(INT-32	15+	15+	15+	NM	NM						
	INT-33	2.5	1.9	2.5	NM	NM						
	INT-55	3.4	2.0	2.2	NM	0.9						
1	INT-56	1.2	1.5	1.6	NM	0.8						
1	INT-57	6.2	2.8	3.1	NM	2.9						
1	INT-58	1.9	1.9	1.6	NM	1.3						
1	INT-59	2.2	2.4	3.0	NM	1.2						
1	INT-60	1.8	1.9	2.4	NM	1.2						
İ	INT-61	2.7	1.8	2.6	NM	2.0						
	INT-62	1.0	2.1	2.6	NM	2.3						
1	INT-65	2.1	1.0	1.2	NM	1.6						
1	INT-66	2.2	1.0	3.1	NM	6.8						
١.	INT-205	1.8	1.8	2.8	NM	2.3						
	INT-208	1.1	2.4	1.2	NM	1.2						
	INT-207	4.6	1.0	1.2	NM	0.7						
	INT-208	1.3	3.4	11.8	NM	8.4						
	INT-209	2.8	15+	14.8	NM	14.8						
	INT-210	15+	15+	15+	NM .	11.6						
	INT-211	1.9	2.0	2.0	NM	NM						
	INT-212	1.6	2.2	1.8	NM	2.2						
	INT-213	1.2	1.2	2.0	NM	2.8						
1	INT-214	3.8	4.6	2.8	NM	NM						
	INT-215	5.2	3.6	3.0	NM	3.1						
	INT-216	3.4	4.2	2.7	NM	NM						
	INT-217	1.6	1.2	1.8	NM	1.1						
_												

1

Table 4-10

Dissolved Oxyge	n at Monitoring Wells
BIOSCITCH CATGE	I at wollitoillia viens

	3/4/94	6/1/94	9/2/94	12/15/94	2/7/95	3/25/95	4/9/95
ERT-1	1.0	0.8	0.2	1.2	NM	NM	NM
ERT-3	1.0	1.0	0.2	1.8	NM	NM	NM
ERT-7	1.0	0.8	0.2	NM	NM	NM	NM
ERT-8	1.0	0.6	0.2	2.2	NM	NM	NM
ERT-9	1.0	1.3	0.4	NM	NM	NM	NM
ERT-22	NM	NM	NM	NM	NM	NM	0.6
ERT-24	8.0	NM	NM	2.0	NM	NM	NM
ERT-25	1.8	1.0	NM	1.6	NM	NM	NM
ERT-26	0.8	NM	NM	2.3	NM	NM	NM
ERT-27	1.9	NM	NM	NM	NM	NM	NM
ERT-28	6.4	NM	NM	4.8	NM	NM	NM
ERT-29	1.2	NM	NM	NM	NM	NM	NM
ERT-30	7.5	NM	NM	NM	NM	NM	NM
ERT-33	1.1	0.4	NM	1.1	NM	NM	NM
ERT-34	0.9	0.6	NM	NM	NM	NM	NM
FLTG-1	0.8	0.3	NM	3.6	NM	NM	NM
FLTG-2	1.0	1.2	NM	NM	NM	NM	NM
FLTG-3	1.3	0.8	NM	NM	NM	NM	NM
FLTG-4	1.0	0.6	NM	NM	NM	NM	NM
FLTG-5	0.8	0.4	NM	3.0	NM	NM	NM
FLTG-6	1.2	1.6	NM	NM	NM	NM	NM
FLTG-7	1.6	0.6	0.8	2.0	0.4	0.2	0.3
FLTG-8	1.7	0.8	0.4	2.5	0.4	NM	NM
FLTG-9	1.2	11.4	15+	NM	15+	NM	NM
FLTG-10	1.1	2.2	2.6	3.2	1.2	NM	NM
FLTG-11	0.6	0.6	0.5	NM	NM	NM	NM
FLTG-12	0.8	1.8	0.6	NM	NM	NM	NM
FLTG-13	0.3	0.8	0.4	2.6	1.3	NM	NM
FLTG-14	0.6	↓ 0.8	0.4	2.4	0.2	NM	NM
FLTG-15	0.8	1.2	NM	2.4	NM	NM	NM
INT-59-P1	1.6	○ 0.5	0.6	NM	1.2	NM	NM
INT-59-P4	1.4	0.9	0.6	NM	0.6	NM	NM
INT-60-P1	1.7	1.0	0.4	NM	0.2	NM	NM
INT-60-P4	1.4	0.8	0.4	NM	0.5	NM	NM
INT-101	1.0	0.4	0.2	2.6	0.3	0.2	0.3
INT-102	0.6	0.6	NM	15+	15+	14.9	15+
INT-103	2.2	0.7	0.1	1.3	0.2	NM	NM
INT-104	2.3	4.8	0.3	4.6	3.2	NM	NM
INT-105	1.2	0.7	0.4	4.6	0.4	NM	_ NM

Table 4-10 (Continued)

Dissolved Oxygen at Monitoring Wells

Dissolved Oxygen at Monitoring Wells											
<u> </u>	3/4/94	6/1/94	9/2/94	12/15/94	2/7/95	3/25/95	4/9/95				
INT-106	15+	15+	15+	15.0	4.7	NM	NM				
INT-107	15+	15+	15+	15.0	15+	NM	NM				
INT-108	1.1	0.2	0.2	2.1	1.7	0.2	0.3				
INT-109	1.6	0.8	0.5	2.2	0.2	NM	NM				
INT-110	1.6	0.9	0.8	0.8	0.4	NM	NM				
INT-111	1.2	1.4	2.0	2.8	1.4	NM	NM				
INT-112	15+	15+	15+	15.0	15+	15+	15+				
INT-113	0.9	15+	15+	10.3	2.0	NM	NM.				
INT-114	1.6	0.8	0.4	1.5	0.2	NM	NM				
INT-115	1.2	1.0	0.8	4.6	0.7	NM	NM				
INT-116	2.4	3.8	NM	2.4	NM	NM	NM				
INT-117	2.7	2.8	NM	3.1	NM	NM	NM				
INT-118	4.8	2.2	NM	2.0	NM	NM	NM				
INT-119	1.1	0.7	1.1	1.1	0.3	NM	NM				
INT-132	2.0	1.8	0.4	3.6	0.7	NM	NM				
INT-133	0.8	1.2	0.5	1.9	0.6	NM	NM				
INT-134	0.6	0.6	0.6	1.8	0.6	NM	NM				
INT-135	0.6	0.8	0.6	6.8	0.7	0.2	0.4				
INT-137	1.0	1.8	0.8	3.1	2.4	NM	N M				
INT-138	0.8	0.8	0.4	2.3	0.6	NM	NM				
INT-139	0.6	0.8	0.9	1.1	0.5	NM	NM				
P-5	1.0	0.4	0.1	0.6	0.2	NM	NM				
P-6	1.0	0.6	0.3	NM	NM	NM	NM				
REI-10-2	1.2	0.8	0.4	1.1	0.2	NM	NM				
REI-10-3	0.8	0.8	0.3	0.8	0.3	NM	NM				
REI-12-2	8.0	2.0	NM	2.4	NM	NM	NM				
S1-101	1.1	0.8	0.2	0.8	0.2	NM	NM				
S1-102	1.6	0.6	0.4	0.5	0.2	0.3	0.2				
S1-103	8.0	6.6	2.3	1.2	0.2	NM	NM				
S1-104	1.6	0.8	1.8	3.9	15+	NM	NM				
S1-105	15+	15+	0.2	1.4	6.8	NM	NM				
S1-106	0.8	8.0	0.4	0.6	0.1	0.2	0.5				
S1-107	5.4	15+	15+	15.0	15+	NM	NM				
S1-108	1.6	0.0	0.6	15.0	15+	NM	NM				
S1-109	8.4	15+	15+	5.2	15+	NM	NM				
S1-110	1.3	- 1.4	0.6	0.6	0.2	NM	NM				
S1-111	2.0	0.8	15+	15.0	15+	NM	NM				
S1-112	0.6	1.4	0.7	2.4	0.2	NM	NM				
S1-113	1.8	0.8	0.4	2.7	0.5	0.3	0.3				

5.0 GROUNDWATER TREATMENT PLANT

5.1 Summary of Activities

In April, operations continued to adjust plant operating conditions to compensate for the lower flows as additional wells meeting criteria were turned off.

Two elevated total suspended solids values were reported as lower flows affected the backwashing capabilities of the sand filters. The automatic continuous backwashing rate is regulated by flow, and when flow is reduced again in the future, one filter will have to be taken out of service.

There have been no other issues for this reporting period.

There has been no carbon transfers this period.

Total flows for April, 1995:

Water discharged to the San Jacinto River - 4,637,100 gallons

Water discharged to the Lagoon - 0

Sludge discharged to the Lagoon - 25,975 gallons

Water processed through the GWT - 4,381,200 gallons

Water discharged to the South Pond - 0

Water blended passed Carbon Filter - 4,537,400 gallons

Water processed from Cell D to GWT plant: metered - 0

Cell D injection at S1-1 through S1-9: metered - 115,400 gallons

5.2 Inoculum/Nutrient Addition

The following have been introduced into the bioreactors/clarifier:

Nutrients:

310 gallons Diammonium Phosphate

Microbes:

16 oz. French Limited Isolated Microbes

Coagulant:

~ 6.0 gallons Percol 778 Cationic Polymer

5.3 Maintenance

Table 5-1 lists the preventive maintenance items performed in April.

5.4 Operating Data

Table 5-2 summarizes the laboratory analysis of the treated water discharged to the San Jacinto River.

TABLE 5-1

Preventive Maintenance

Day	Action
April 3	Completed electrical safety inspection of all electrical tools and extension cords.
April 7	Checked belt tension and lubed blowers 1 and 2.
April 10	Exercised valves in GWT.
April 13	Replaced filters in central filter.
April 17	Lubed all pumps in GWT.
April 19	Lubed sump and water booster pumps in chemical storage.
April 23	Replaced filters in central filter.
April 24	Lubed chemical storage and west gates.

TABLE 5-2
Treated Water Results Summary

			pH	T:	ss	TO	c	0.0	kG.	Benz	ene	Chlo	HC's	Tota	PCBe	Napt	halene
Collected	Set No.		3-9)	5 F	PM	55 F	PM	15	PPM	150		500	PPB	0.6	5 PPB	300	PPB
		Daily-	-R-Avg-	Daily	R-Avg-	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily	R-Avg	Daily "	R-Avg	Daily	R Avg
2√an-95	M03A0296	7.78		4.		12.9		2.5		5.		275.		.16		5.	
6√an-95	M03A0297	7.81		5.		19.		2.5		6.		249.		.16		5.	
9 Jan-95	M03A0298	7.8		7.		9.8		2.5		2.5		124.		.16		5.	
12-Jan-95	M03A0299	7.77		2.		9.8		2.5		2.5		200.		.16		5.	
16 Jan 96 -	- M03A0300	7:61		4."		18:3		2.5	. 1	6,		393.	. –	.16		5.	
19-Jan-95	M03A0301	7.44		2.		19.8		2.5		5.		454.	İ	.16		5.	
23-Jan-95	M03A0302	7.82		9.		35.5		2.5		6.		192.		.16		5.	
26-Jan-95	M03A0303	7.66		.5		20.5		2.5		6.		234.		.16		5.	
30-Jan-95	M03A0304	7.15	7.8	4.	4.2	44.3	21.1	2.5	2.5	25.	7.1	2326.	494	.16	.16	5.	5.
2-Feb-95	M03A0305	7.28	7.6	.5	3.8	11.7	21.	2.5	2.5	6.	7.2	613.	532	.16	.16	5.	5.
6-Feb-95	M03A0308	7.55	7.6	1.	3.3	11.7	20.2	2.5	2.5	5.	7.1	411.	550	.16	.16	5.	5.
9-Feb-95	M03A0307	7.52	7.5	5.	3.1	8.8	20.	2.5	2.5	5.	7.4	226.	561	.16	.16	5.	5.
13-Feb-95	M03A0308	7.5	7.5	22.	5.3	9.7	20.	2.5	2.5	5.	7.7	349.	578	.16	.16	5.	5.
16-Feb-95	M03A0309	7.33	7.5	.5	4.9	5.2	18.6	2.5	2.5	5.	7.6	276.	565	.16	.16	5.	5.
20-Feb-95	M03A0310	7.37	7.5	6.	5.4	5.8	17.	2.5	2.5	4,	7.4	193.	536	.16	.16	5.	5.
23-Feb-95	M03A0311	7.29	7.4	1.	4.5	1.	13.2	2.5	2.5	2.5	7.1	60.	521	.16	.16	5.	5.
27-Feb-95	M03A0312	7.46	7.4	3.	4.8	9.5	12.	2.5	2.5	2.5	6.7	164.	513	.16	.16	5.	5.
2-Mar-95	M03A0313	7.47	7.4	.5	4.4	8.5	8.	2.5	2.5	2.5	4.2	145.	271	.16	.16	5.	5.
6-Mar-95	M03A0314	7.49	7.4	1.	4.4	8.1	7.6	2.5	2.5	2.5	3.8	128.	217	.16	.16	5.	5.
9-Mar-95	M03A0315	7.38	7.4	1.	4.4	8.	7.2	2.5	2.5	2.5	3.5	193.	193	.16	.16	5.	5.
13-Mar-95	M03A0316	7.64	7.4	5.	4.4	7.2	7.	2.5	2.5	2.5	3.22	111.	180	.16	.16	5.	5.
16-Mar-95	M03A0317	7.55	7.4	.5	2.1	6.	6.6	2.5	2.5	2.5	2.9	150.	158	.16	.16	5.	5.
20-Mar-95	M03A0318	7.41	7.5	.5	2.1	6.6	6.7	2.5	2.5	2.5	2.7	97.	138	.16	.16	5.	5.
23-Mar-95	M03A0319	7.45	7.5	1.	1.5	6.	6.8	2.5	2.5	2.5	2.5	185.	137.	.16	.16	5.	5.
27-Mar-95	M03A0320	7.83	7.5	3.	1.7	12.2	8	2.5	2.5	6.	2.9	325.	166	.16	.16	5.	5.
30-Mar-95	M03A0321	7.47	7.5	7.	2.2	11.9	8.3	2.5	2.5	6,	3.3	342.	186	.16	.16	5.	5.
3-Apr-95	M03A0322	7.42	7.5	1.	2.2	11.7	8.6	2.5	2.5	6.	3.7	269.	200	.16	.16	5.	5.
6-Apr-95	M03A0323	7.45	7.5	2.	2.3	12.2	9.1	2.5	2.5	6.	4.1	239.	212	.16	.16	5.	5.
10-Apr-95	M03A0324	7.38	7.5	2.	2.4	11.1	9.4	2.5	2.5	6.	4.4	230.	216	.16	.16	5.	5.
13-Apr-95	M03A0325	7.62	7.5	3.	2.2	12.9	10.1	2.5	2.5	6.	4.8	364.	245	.16	.16	5.	5.
17-Apr-95	M03A0326	7.59	7.5	11.	3.4	12.9	10.8	2.5	2.5	6.	5.2	247.	255	.16	.18	5.	5.
20-Apr-95	M03A0327	7.75	7.55	1.	3.4	12.1	11.4	2.5	2.5	6.	5.6	226.	270	.16	.16	5.	5.
24-Apr-95	M03A0328	7.67	7.58	13.	4.8	13.	12.2	2.5	2.5	6.	6.	269.	279.	.16	.16	5.	5.
27-Apr-95	M03A0329	7.51	7.54	_1.	4.6	12.2	12.2_	2.5	2.5	2.5	5.6	236.	269	.16	.16	5.	5.
1-May-95	M03A0330	7.63	7.56														

Chlorinated hydrocarbons value is the sum of detected concentrations of 21 volatile chlorinated hydrocarbons on target compound list.

TABLE 5-2 (Continued)
Treated Water Results Summary

	Į.									T	T		
		As	8e 1000 PPB	50 PPB	Cr 500 PPB	Cu 15 PPB	Pb 66 PPB	Mn 300 PPB	Hg 1 PPB	Ni 148 PPB	Se 20 PPB	Ag 5 PPB	2n 162 PPB
Collected	Set No.	150 PPB Daily R-Avg	Daily R-Avg		Daily R-Avg	Daily R-Avg	Daily R-Avg		Daily R-Avg	Daily R-Avg	Daily R-Avg	Daily R-Avo	Daily R-Avg
2-Jan-95	M03A0296	9.9	172.	.1	2.1	1.6	.5	18.	.1	1.	1.2	.2	7.
5-Jan-95		14.	151.	1.1	3.	2.	.5	57.	.1	6.	1.2	.2	20.
9-Jan-95		12.	171.	1.1	.9	3.	.5	23.	.1	4.	1.3	.2	7.
12-Jan-95	- 1	_1.6.	143.	<u> </u>	2	2	.5	2.	,,	2.	1.3	.2	3.
16-Jan-95	M03A0300	12.	146.	1 .1	.6	3.	.5	1.		3.	1.3	.2	6.
19-Jan-95	M03A0301	18.	135.	1.1	.4	2.	.5	2.	.1	4.	1.3	.2	18.
23-Jan-95	M03A0302	12.	140.	.1	.2	2 .	.5	3.	.1	6.	1.3	.2	16.
26-Jan-95	M03A0303	16.	148.	.1	.2	2.	.5	2.	.1	2.	1.3	.2	12.
30-Jan-95	M03A0304	9.	238.	.1	.2	2.	.5	43.	.1	3.	1.3	.2	5.
2-Feb-95	M03A0305	10. 13.2	192. 163	.1 .1	17	2. 2.2	.5 .5	15. 16.4	.1 .1	4, 3.8	1.3 1.2	.2 .2	8. 10.6
6-Feb-95	M03A0306	11, 12.9	188. 167	.1 .1	.2 .4	1. 2.1	.5 .5	4. 10.6	.1 .1	2. 3.3	1.3 1.3	.2 .2	5. 8.9
9-Feb-95	M03A0307	16. 13.3	195. 169	.1 .1	.2 .3	4. 2.2	.5 .5	6. 8.7	.1 .1	6. 3.6	1.3 1.3	.2 .2	11. 9.3
13-Feb-95	M03A0308	13. 13.	184. 174	.1 .1	25	1. 2.1	.5 .5	15. 10.1	.1 .1	5. 3.9	1.3 1.3	.2 .2	8. 9.9
16-Feb-95	M03A0309	12. 13.	184. 178	.1 .1	.2 .5	1. 1.9	.5 .5	6. 10.7	.1 .1	6. 4.2	1.3 1.3	.2 .2	7. 10.
20-Feb-95	M03A0310	14. 12.6	191. 184	.1 .1	27	2. 1.9	.5 .5	27. 13.4	.1 .1	8. 4.7	1.3 1.3	.3 .2	6. 8.7
23-Feb-95	M03A0311	13. 12.7	165. 187	.1 .1	18	2. 1.9	.5 .5	3. 13.4	.1 .1	8. 4.9	1.3 1.3	.2 .2	9. 7.9
27-Feb-95	M03A0312	22. 13.3	144. 187	1 1	4.5 1.2	3. 2.	.5 .5	3. 13.6	.1 .1	12. 6.	1.3 1.3	.5 .2	2.5 6.8
2-Mar-95	M03A0313	23. 14.9	133. 175	1 1 1	2. 1.4	1. 1.9	.5 .5	15. 10.4	.1 .1	8. 6.6	1.3 1.3	.5 .2	6. 6.9
6-Mar-95	M03A0314	17. 15.7	130. 168	12	1. 1.4	3. 2.	2.2 .7	3. 9.1	.1 .1	2.5 6.4	.5 1.2	.8 .3	8. 6.9
9 Mar-95 13 Mar-95	M03A0315 M03A0316	24. 17.1 17. 17.2	111. 160 121. 151	.1 .2	.2 1.4	.8 2.	.5 .7 .5 .7	4. 9.1 41. 13.	.1 .1	4. 6.6 3. 6.3	1.3 1.2 1.3 1.2	.2 .3	6. 7.1 5. 6.4
16-Mar-95	M03A0318	17. 17.2 23. 18.3	121. 151 114. 144	.1 .2	.2 1.4	1. 1.6 3. 1.9	.5 .7 .5 .7	41. 13. 1 2. 11.6	.1 .1	3. 6.1	1.3 1.2	.2 .3	11. 6.7
20-Mar-95	M03A0318	18. 19.	112. 136	.1 .2	.2 1.3	3. 2.1	.5 .7 .5 .7	2. 11.1	.1 .1	2. 5.6	1.3 1.2	.2 .3	3. 6.3
23-Mar-95	M03A0319	19. 19.6	119. 128	.1 .2	.2 1.	2. 2.1	.5 .7	2. 8.3	.1 .1	3. 5.1	1.3 1.2	.2 .3	4. 6.1
27-Mar-95	M03A0320	14. 19.7	130. 124	.1 .2	3. 1.3	2. 2.1	.5 .7	22. 10.4	.1 .1	5. 4.7	1.3 1.2	.2 .3	40. 9.5
30-Mar-95	M03A0321	19. 19.3	132. 122	.1 .2	2. 1.	2. 2.	.5 .7	25. 12.9	.1 .1	6. 4.1	1.3 1.2	.2 .3	8. 10.1
3-Apr-95	M03A0322	17. 18.7	127. 122	.1 .2	.2 .8	2. 2.1	.5 .7	9. 12.2	.1 .1	1. 3.3	1.3 1.2	.2 .2	15. 11.1
6-Apr-95	M03A0323	23. 19.3	102. 119	.1 .1	.2 .7	1. 1.9	.5 .5	4. 12.3	.1 .1	1. 3.1	1.3 1.3	.2 .2	4. 10.7
10-Apr-95	M03A0324	12. 18.	157. 124	.1 .1	29	2. 2.	27	32. 15.4	.1 .1	4. 3.1	1.3 1.3	.2 .2	8. 10.9
13-Apr-95	M03A0325	44. 21.	107. 122	.1 .1	1. 1.	2. 2.1	.5 .7	11. 12.1	.1 .1	6. 3.4	1.3 1.3	.2 .2	3 . 10.7
17-Apr-95	M03A0326	26. 21.3	171. 129	1 1	14. 2.5	2. 2.	17	108. 23.9	.1 .1	14. 4.7	1.3 1.3	.2 .2	17. 11.3
20-Apr-95	M03A0327	24. 22.	129. 130	.7 .2	7. 3.3	9. 2.7	29	43. 28.4	.1 .1	10. 5.6	1.3 1.3	.2 .2	34. 14.8
	M03A0328	21. 22	115. 130.	.1 .2	7. 4.	1. 2.6	.5 .9	38. 32.4	.1 .1	6. 5.9	1.3 1.3	.2 .2	4. 14.8
27-Apr-95	M03A0329	24. 23.3	110. 128	.1 .2	2. 3.9	2. 2.6	.5 .9	12. 31.3	.1 .1	7. 6.1	1.3 1.3	.2 .2	9. 11.3

Metals values in PPB.

6.0 AMBIENT AIR MANAGEMENT

Ambient air quality management continued on an "as-needed" basis to protect the environment, human health, and site workers.

6.1 Summary of Activities

Collected and analyzed three time-integrated personnel exposure samples; the measured levels of volatile organic compounds were well below the action levels.

Sampled the ambient air in all work areas several times per shift and on a random "spotcheck" basis; there were no levels of volatile organic compounds which required response action. Sampled ambient air in special work areas where burning and/or welding was planned. Sampled ambient air continuously in areas where exposure could occur and where confined space work occurred.

6.2 Problems and Response Action

<u>Problem</u>	Response Action
Calibrate portable vapor meters.	Train operators to calibrate; refurbish all meters.
Sampling "hot" wells.	Require respirator use when sampling "hot" wells.
Ambient air quality in all work areas.	Check all work areas with portable meter several times per day.
H ₂ S levels in some well vaults.	Vent vault and purge with air before working in the vaults.

6.3 Problems Resolved

None.

6.4 On-going Events/Activities

Measure ambient air quality in all work areas several times per day.

Conduct periodic time-integrated sampling in all major work areas.

Require respiratory protection when sampling "hot" wells.

Conduct necessary air sampling and analyses to issue "burn" permits.

Closely monitor ambient air quality in the vicinity of new projects/activities.

Conduct respirator fit tests on all employees.

7.0 QUALITY ASSURANCE/QUALITY CONTROL

7.1 Summary of Activities

7.1.1 Sampling

One set of personal air monitoring samples were collected in April. The following is a summary of current routine and special air matrix code sample specifics:

MATRIX CODE

SAMPLE SPECIFICS

MO1D

TF at three locations

TF = Tenax® front tube

Table 7-1 is a summary of the air, soil and water samples collected during the month of April. Table 7-2 is a summary of Scheduled Sampling Events for the month of April.

7.1.2 Data Validation Activities Summary

7.1.2.1 Treated Water Samples

Data validation was completed for sample sets M03A0316, M03A0317, M03A0318, M03A0319, M03A0320, M03A0321, M03A0322 and M03A0323. These samples were collected between March 13, 1995 and April 6, 1995. QC failures are summarized in Table 7-3. Completeness values are summarized in Tables 7-4 through 7-8.

7.1.2.2 Groundwater Samples

Level I data validation was completed for the monthly groundwater monitoring sample sets collected in March and April. There were no significant QC failures found for the analytical data on these samples.

7.1.2.3 Other Samples

All other special sample sets were validated manually this period.

7.2 Data Validation QC Summary and Discussion

7.2.1 Level I and Level II QC Philosophy

The Quality Assurance Project Plan (QAPP) defines data validity in terms of procedural requirements which must be followed for data comparability, and numerical data quality objectives which must be met to assure precision and accuracy of the results. Precision, accuracy and completeness are the numerical Data Quality Objectives (DQOs) established for the French Project by the QAPP. The intent of the data validation process is to verify that the documentation and quality control data provided by the laboratory properly substantiate the required data quality.

For purposes of data validation procedures, the QAPP defines two QC levels: Level I and Level II. Level I data validation is specified for process control and progress monitoring sample data validation and Level II data validation is specified for remediation verification sample results and treated water discharge sample results.

TABLE 7-1 Samples Collected - April, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M01D005501	Personal air monitoring	WTP Operator	4/12	4/13	N	Α
M01D005502	Personal air monitoring	Well Maint.	4/12	4/13	N	A
M01D005503	Personal air monitoring	Security	4/12	4/13	N	A
M03A032201	Treated water discharge	CF Out	4/03	4/05	Y	A
M03A032301	Treated water discharge	CF Out	4/06	4/07	Y	A
M03A032401	Treated water discharge	CF Out	4/10	4/11	N	A ~
M03A032501	Treated water discharge	CF Out	4/13	4/13	N	A
M03A032601	Treated water discharge	CF Out	4/17	4/19	N	A
M03A032701	Treated water discharge	CF Out	4/20	4/21	N	A
M03A032801	Treated water discharge	CF Out	4/24	4/25	N	Ą
M03A032901	Treated water discharge	CF Out	4/27	4/28	N	A
M04A003101	Monthly GW monitoring	INT-111	4/01	4/03	Y	A
M04A003102	Monthly GW monitoring	INT-106	4/01	4/03	Y	Α
M04A003103	Monthly GW monitoring	FLTG-007	4/01	4/03	Y	Α
M04A003104	Monthly GW monitoring	S1-106	4/01	4/03	Y	A

A = American Analytical and Technical Services
 N = North Water District Lab
 K = Chester LabNet-Houston

TABLE 7-1 Samples Collected - April, 1995

					_	
Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	<u>Lab</u>
M04A003105	Monthly GW monitoring	S1-123	4/01	4/03	Υ	Α .
M04A003106	Monthly GW monitoring	INT-101	4/01	4/03	Υ	Α
M04A003107	Monthly GW monitoring	INT-112	4/01	4/03	Y	A
M04A003201	Monthly GW monitoring	INT-104	4/04	4/05	Y	Α
M04A003202	Monthly GW monitoring	INT-141	4/04	4/05	Υ	Α
M04A003203	Monthly GW monitoring	INT-144	4/04	4/05	Υ	A
M04A003204	Monthly GW monitoring	ERT-22	4/04	4/05	Υ	A
M04A003205	Monthly GW monitoring	INT-110	4/04	4/05	Y	Α
M04A003206	Monthly GW monitoring	INT-115	4/04	4/05	Y	A
M04B002901	Monthly GW monitoring	S1-102	4/02	4/03	Υ	A
M04B002902	Monthly GW monitoring	S1-107	4/02	4/03	Y	A
M04B002903	Monthly GW monitoring	REI-10-3	4/02	4/03	Υ	A
M04B002904	Monthly GW monitoring	\$1-113	4/02	4/03	Υ	Α
M04B002905	Monthly GW monitoring	S1-050-P-2	4/02	4/03	Υ	Α
M04B002906	Monthly GW monitoring	S1-120	4/02	4/03	Y	\mathbf{A}_{j}
M04B002907	Monthly GW monitoring	S1-127	4/02	4/03	Y	Α
M04B003001	Monthly GW monitoring	S1-132	4/05	4/05	Y	A r

Labs: A = American Analytical and Technical Services N = North Water District Lab K = Chester LabNet-Houston

TABLE 7-1 Samples Collected - April, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	Lab
M04B003003	Monthly GW monitoring	INT-119	4/05	4/05	Υ	A
M04B003004	Monthly GW monitoring	INT-120	4/05	4/05	Y	Α
M04B003006	Monthly GW monitoring	INT-127	4/05	4/05	Y	Α
M04B003101	Monthly GW monitoring	S1-114	4/06	4/07	Υ	A
M04B003102	Monthly GW monitoring	S1-109	4/06	4/07	Y	Α
M04B003103	Monthly GW monitoring	INT-123	4/06	4/07	Y	Ą
M04B003104	Monthly GW monitoring	REI-10-2	4/06	4/07	Y	Α
M04C002101	Monthly GW monitoring	INT-111	4/02	4/03	Υ	Α
M04C002102	Monthly GW monitoring	INT-106	4/02	4/03	Υ	Α
M04C002103	Monthly GW monitoring	FLTG-007	4/02	4/03	Υ	A
M04C002104	Monthly GW monitoring	S1-106	4/02	4/03	Υ	Α
M04C002105	Monthly GW monitoring	S1-123	4/02	4/03	Υ	Α
M04C002106	Monthly GW monitoring	INT-101	4/02	4/03	Υ	A
M04C002107	Monthly GW monitoring	INT-112	4/02	4/03	Y	A
M04C002401	Monthly GW monitoring	INT-104	4/04	4/05	Y	A
M04C002402	Monthly GW monitoring	INT-141	4/04	4/05	Υ	A
M04C002403	Monthly GW monitoring	INT-144	4/04	4/05	Y	A

7-5

Labs: A = American Analytical and Technical Services
N = North Water District Lab
K = Chester LabNet-Houston

QAQC.04

TABLE 7-1 Samples Collected - April, 1995

Sample No.	Description	Location	Date Samp'd	Lab Rec'd	Data Rec'd	_Lab
M04C002404	Monthly GW	ERT-22	4/04	4/05	Υ	Α
M04C002405	monitoring Monthly GW monitoring	INT-110	4/04	4/05	Υ	Α
M04C002406	Monthly GW monitoring	INT-115	4/04	4/05	Υ	Α
	!	T 101 F#	4/06	4/06	Y	Α
M06C002601	Monthly process water	T-101 Eff	4/06	4/06	Ϋ́	Ā
M06C002602	Monthly process water	T-101 Inf				
M06C002603	Monthly process water	R1	4/06	4/06	Y	A
M06C002604	Monthly process water	R2	4/06	4/06	Υ	Α
M06C002605	Monthly process water	Cell D Liqr	4/06	4/06	Y	Α
S14B000401	North well monitoring	GW-5	4/24	4/25	N	A
S14B000402	North well monitoring	GW-12	4/24	4/25	N	A
S14B000403	North well monitoring	GW-13	4/24	4/25	N	Α
S17A000501	Wetlands sludge	SE Corner	4/10	4/11	N	A
S17A000601	Wetlands sludge	SE Corner	4/10	4/11	N	Κ

Labs: A = American Analytical and Technical Services
N = North Water District Lab
K = Chester LabNet-Houston

TABLE 7-2

Scheduled Sampling Events April, 1995

Date Sampled	Set Number	Description	Schedule
4/01/95	M04A0031	Monthly GW monitoring	Monthly
4/04/95	M04A0032	Monthly GW monitoring	Monthly
4/02/95	M04B0029	Monthly GW monitoring	Monthly
4/05/95	M04B0030	Monthly GW monitoring	Monthly
4/06/95	M04B0031	Monthly GW monitoring	Monthly
4/02/95	M04C0021	Monthly GW monitoring	Monthly
4/04/95	M04C0022	Monthly GW monitoring	Monthly
4/04/95	M04C0023	Monthly GW monitoring	Monthly
4/04/95	M04C0024	Monthly GW monitoring	Monthly
4/06/95	M06C0026	Monthly process water	Monthly
4/24/95	S14B0004	North GW wells	Monthly
4/12/95	M01D0055	Personal air monitoring	Monthly
4/03/95	M03A0322	Treated water discharge	Bi-weekly
4/06/95	M03A0323	Treated water discharge	Bi-weekly
4/10/95	M03A0324	Treated water discharge	Bi-weekly
4/13/95	M03A0325	Treated water discharge	Bi-weekly
4/17/95	M03A0326	Treated water discharge	Bi-weekly
4/20/95	M03A0327	Treated water discharge	Bi-weekly
4/24/95	M03A0328	Treated water discharge	Bi-weekly
4/27/95	M03A0329	Treated water discharge	Bi-weekly
4/10/95	S17A0005	Wetlands sludge	Special
4/10/95	S17A0006	Wetlands sludge	

TABLE 7-3

Treated Water QC Failure Summary

Sample Date	Test	QC Failure	Explanation	Corrective Action
03/13/95	Mn	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS, Dup and Spike were within QC limits.
03/16/95	Ba	ICP Serial Dilution	ICP serial dilution indicated interference.	None required - LCS, Dup and Spike were within QC limits.
03/30/95	sv	Su Recov.	Surrogate Tribromophenol was outside QC limits on sample -01 and -01 MS and -01 MSD.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits. Matrix effect is indicated.
03/30/95	Mn	Dup. Prec.	Duplicate RPD was outside control limits.	None required - LCS and Spike were within control limits:
04/03/95	sv	Su Recov.	Surrogate Tribromophenol was outside QC limits on sample -01 and -01 MS and -01 MSD.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits. Matrix effect is indicated.
04/06/95	sv	Su Recov.	Surrogate Tribromophenol was outside QC limits on sample -01.	None required - 1 base/neutral and 1 acid surrogate are allowed to be outside QC limits.

7.2.3 Completeness Summaries

Tables 7-4 through 7-8 summarize completeness values for VOA, SVA, PCBs, Metals and miscellaneous parameters on treated water samples.

VOA (Table 7-4)

A total of 8 VOA sample sets have been validated with all categories meeting Project Completeness Goals.

SVA (Table 7-5)

A total of 8 SVA sample sets have been validated for this time period. All categories meet or exceed Project Completeness Goals with the exception of sample matrix effect. This is due to matrix effect failures in the early stages of the project and the MS/MSD accuracy failures that occurred during September and October 1994.

PCBs (Table 7-6)

A total of 8 PCB sample sets have been validated for this time period with all samples, meeting data quality objectives. All categories meet or exceed Project Completeness Goals.

Metals (Table 7-7)

A total of 8 sample sets have been validated for this time period. Project Completeness Goals are met or exceeded in all categories.

Miscellaneous Parameters (Table 7-8)

A total of 8 sample sets have been validated for this time period. Project completeness goals are met or exceeded in all categories.

TABLE 7-4

Completeness Summary M03A Treated Water Volatile Organics Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	Project to Date	PROJECT GOAL
Analysis Holding Time 12 Hour Window	100 100	100 100	100 100
SU Check SU1 (d4-1,2-DCE) SU2 (d8-Toluene) SU3 (4-BFB) IS Check IS1 (BrCIMethane) IS2 (1,4-DiFIBenzene) IS3(d5-CIBenzene)	100 100 100 100 100 100 100	94 97 98 99 100 100 100	90 90 90 90 90 90
Sample RT/RRT Check Vinyl Chloride Accuracy Precision Benzene	100 100 100	* 99 99	90 90
Accuracy Precision	100 90	99 100	90 90
No Group Matrix Effect No Sample Matrix Effect	100 100	*	90 90
Tune Check Overall ICAL Check Overall CCAL Check Overall Lab Blank Check	100 100 100 100	* * *	

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-5

Completeness Summary M03A Treated Water Semivolatile Organic Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru	Project to Date	PROJECT GOAL
	M03A0323		
Extract Holding Time	100	100	100
Analysis Holding Time	100	100	100
12 Hour Window	100	100	100
SU Check	100	95	90
SU1 (2-FIPhenol)	100	95	90
SU2 (d5-Phenol)	100	94	90
SU3 (d5-Nitrobenz)	100	96	90
SU4(2-FIBiphenyl)	100	98	90
SU5(2,4,6-TBPh)	100	94	90
SU6(d14-Terphen)	75	94	90
IS Check	100	98	90
IS1 (d4-1,4-DiClBenz)	100	100	90
IS2 (d8-Naph)	100	100	90
IS3 (d10-Acenaph)	100	100	90
IS4 (d10-Phenanth)	100	100	90
IS5 (d12-Chrysene)	90	97	90
IS6 (d12-Perylene)	100	96	90
Sample RT/RRT	100	*	*
Napthalene			
Accuracy	100	96	90
Precision	100	99	90
No Group Matrix Effect	100	99	90
No Sample Matrix Effect	100	89	90
Tune Check	100	*	*
Overall ICAL Check	100	*	*
Overall CCAL Check	100	*	*
Overall Lab Blank Check	100	*	*

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-6

Completeness Summary M03A Treated Water PCB Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	Project to Date	PROJECT GOAL
Extract Holding Time	100	100	100
Analysis Holding Time	100	100	100
12 Hour Window	100	100	100
SU Check - Column A	100	99	90
SU1 (DCBP)	100	88	NS
SU2 (TCMX)	100	97	NS
SU Check - Column B	100	98	90
SU1 (DCBP)	100	87	NS
SU2 (TCMX)	100	97	NS
SU Check - Column A or B	100	98	90
Aroclor 1242			
Accuracy	100	99	90
Precision	100	97	90
Overall ICAL Check	100	*	
Overall 1st CCAL Check	100	*	
Overall 2nd CCAL Check	100	*	
Overall Lab Blank Check	100	*	

^{* -} Level II QC checks were performed on 10% of samples prior to 6/14/93. PTD completeness values do not apply to these checks.

TABLE 7-7

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	PROJECT GOAL
ANALYTE: BARIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference Prep Blank Check Lab Control Spike Check	100 100 88 100 100	95 95 NA 100 100
ANALYTE: CADMIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: CHROMIUM		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: COPPER		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: LEAD	e e	
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	PROJECT GOAL
ANALYTE: MANGANESE		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 88 75 100 100	95 95 NA 100 100
ANALYTE: NICKEL		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: SILVER		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: ZINC		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100
ANALYTE: MERCURY		
MS Accuracy DUP Precision/Difference No Matrix Interference* Prep Blank Check Lab Control Spike Check	100 100 100 100 100	95 95 NA 100 100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-7 (Continued)

Completeness Summary M03A Treated Water Metals Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	PROJECT GOAL
ANALYTE:ARSENIC		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100
ANALYTE: SELENIUM		
MS Accuracy	100	95
DUP Precision/Difference	100	95
No Matrix Interference*	100	NA
Prep Blank Check	100	100
Lab Control Spike Check	100	100

W - All samples waived due to low response

Furnace analyses - failure of analytical spike or low MSA coefficient ICP analyses - failure of serial dilution

^{*} Matrix interference is indicated by:

TABLE 7-8

Completeness Summary M03A Treated Water Miscellaneous Parameters Analyses

SAMPLE DATE SET NUMBER	M03A0316 thru M03A0323	Project to Date	PROJECT GOAL
PARAMETER: TOC			
Analysis Hold Time	100	100	100
MS Accuracy	100	100	NA
DUP Precision	100	100	NA
PARAMETER: OILS			
Analysis Hold Time	100	100	100
MS Accuracy	100	100	NA
DUP Precision	100	100	NA
PARAMETER: TSS			
Analysis Hold Time	100	100	100
MS Accuracy	NA	NA	NA
DUP Precision	100	100	NA

8.0 SITE MAINTENANCE

8.1 Summary of Activities

8.1.1 General Housekeeping

The site safety and housekeeping inspections and responses kept grounds safe and attractive for employees and visitors.

8.1.2 Purchasing

All purchases were covered by written requisitions and purchase orders. Purchase of chemicals is now reduced to groundwater treatment and insitu remediation.

A contract was awarded to American Parking Control for driveway repair and repair of Gulf Pump Road.

8.1.3 Equipment Maintenance

Routine preventive and production maintenance was performed on all equipment.

8.2 Visitors

<u>April 11</u>:

The following visitors were recorded at the site during April:

<u>April 5</u>: Greg Crouch, Crouch Environmental

(b) (6) Crosby ISD
(b) (6) Crosby ISD

Johnny Rombs, LTT Karl A. Christen, LTT

Frank Spicer, LTT

Greg Crouch, Crouch Environmental

Crosby ISD

D. Licatino, ARJ
Burt Campbell, PMCI
Carla Williams, PMCI
S. Birdwell, Remedial
James Sher, TNRCC
Jim Thomson, AHA
Judith Black, EPA
Stephanie Hrabar, GEMS²
Lynne Johnson, GEMS²

April 12:

(b) (6)

Crosby ISD

April 16:

Ron Callahan, Strawn Nolan Hebert, Strawn

<u>April 17</u>:

Warren Fray, Argo

Stephanie Hrabar, GEMS²

All Klaveness, KRC

Bill Jones, B.R. Jones Assoc.

H.C. Clark, Bay Hill Ron Callahan, Strawn Nolan Hebert, Strawn

Walter Turpening, Elohi Geophy

Chip Boxley, Texas Trees Ken Kirsch, Interstate Trees

April 18:

Mike Webb, LAN
Phil Meaders, LAN
Terry Van Nay, LAN
James Sher, TNRCC
Earl Hendrick, EPA
Jeff Herman, ALH Ind.

April 19:

Vyacheslav G. Dzybenko, Letco

April 20:

John Vincent, SWC

April 21:

Thelma Waitkus, resident

Rhonda Cordray, Office and Data Services

April 24:

Mike Webb, LAN

April 26:

Don Walters, EPA

April 27:

Mike Webb, LAN

Judith Black, EPA Sam Becker, EPA Carl Edleevel, EPA B.R. Schuster, ACC

April 27:

EPA/TNRCC Open House

Judith Black
Barbara Ferguson
Amy Lange
(b) (6)
David Bary
(b) (6)
Jim Feeley
Hoyt Clark
(b) (6)
Sam Becker
(b) (6)
(b) (6)
Theresa Lamson

Carl Edleevel

(b) (6) (b) (6) (b) (6)

Ken Miller

(b) (6) (b) (6)

Larry Brown

(b) (6)

(b) (6)

(b) (6)

Donn Walters Bebe Burns

(b) (6

(b) (6)

8.3 Emergency Equipment

8.3.1 Flood Gate Test

The flood gate was exercised on April 23, 1995, with no leaks detected.

8.3.2 P-8 Auxiliary Pump

P-8 Auxiliary Pump has been converted to the lagoon ground cover vegetation sprinkler source. It has operated approximately 40 hours in April.

8.3.3 Fire Extinguishers

All fire extinguishers were inspected and certified.

8.4 Security

Smith Security provides 24-hour security at the FLTG site, including the south side of Gulf Pump Road; all site areas are checked hourly. No incidents reported by Security in April. Additional security was contracted to Harris County Precinct #2 for traffic control during the EPA/TNRCC Open House on April 27, 1995.

8.5 Operator Training

All training is documented and records are maintained on site.

8.6 Data Management

Data base is fully operational. Data is entered on a daily basis.

8.7 Personnel Monitoring

Results of personnel monitoring conducted during April are included in Table 8-1.

8.8 OVM System

Work areas are being monitored daily with Organic Vapor Monitor 580A.

8.9 Repository

Records from the April review are listed in Attachment 8A.

8.10 Meteorological Data

The new meteorological station is operational. Data is generated on a weekly basis.

Rainfall data is listed in Table 8-2.

On-Site Employee Contaminant Limits
(From OSHA 29 CFR 1910 Subpart Z)

	PEL	<u> </u>	12-Apr-95		12-Apr-95	3	12-Apr-95
	8 hour	Maint.		WTP Op		WTP Op	
Compound	PPM	% of PEL	PPM	% of PEL	PPM	% of PEL	PPM
		1		/ / /	'''	/ /3 5/ / 22	'''
Chloromethane	50	0.000	0.000	0.003	0.001	0.001	0.001
Bromomethane	5	0.000	0.000	0.004	0.000	0.002	0.000
Vinyl chloride	1	0.000	0.000	0.000	0.000	0.000	0.000
Chloroethane	1000	0.000	0.000	0.000	0.000	0.000	0.000
		l :					0.000
Dichloromethane	50	0.001	0.000	0.007	0.003	0.002	0.001
Acetone	750	0.002	0.012	0.001	0.010	0.002	0.015
Carbon disulfide	10	0.000	0.000	0.000	0.000	0.000	0.000
1,1-Dichloroethene	5	0.037	0.002	0.000	0.000	0.000	0.000
1,1-Dichloroethane	100	0.000	0.000	0.000	0.000	0.000	0.000
trans-1,2-Dichloroethe	200	0.000	0.000	0.001	0.003	0.000	0.001
Chloroform	10	0.003	0.000	0.028	0.003	0.053	0.005
1,2-Dichloroethane	10	0.002	0.000	0.020	0.002	0.035	0.003
2-Butanone	200	0.022	0.043	0.002	0.004	0.004	0.008
i, d					1		
1,1,1-Trichtoroethane	350	0.010	0.037	0.000	0.001	0.001	0.002
Carbon Tetrachloride	5	0.003	0.000	0.030	0.002	0.111	0.006
Vinyl acetate	10	0.002	0.000	0.000	0.000	0.005	0.000
Bromodichloromethane	9		0.000		0.000	3.300	0.000
1,2-Dichloropropane	75	0.000	0.000	0.000	0.000	0.000	0.000
cis-1,3-Dichloropropen	1 1	0.000	0.000	0.000	0.000	0.000	0.000
Trichloroethene	50	0.000	0.000	0.000	0.000	0.000	0.000
Dibromochloromethan	е	l :	0.000		0.000		0.000
1,1,2-Trichloroethane	10	0.000	0.000	0.000	0.000	0.000	0.000
Benzene	1	0.086	0.001	0.112	0.001	0.178	0.002
trans-1,3-Dichloroprop	1	0.000	0.000	0.000	0.000	0.000	0.000
2-Chloroethylvinyl ethic	er		0.000		0.000		0.000
]		1		1	
Bromoform	0.5	0.000	0.000	0.000	0.000	0.000	0.000
4-Methyl-2-pentanone	50	0.000	0.000	0.000	0.000	0.001	0.001
2-Hexanone	5	0.000	0.000	0.000	0.000	0.004	0.000
Tetrachloroethene	50	0.000	0.000	0.001	0.000	0.007	0.003
1,1,2,2-Tetrachloroet	1	0.000	0.000	0.000	0.000	0.000	0.000
Toluene	100	0.000	0.000	0.001	0.001	0.002	0.002
Chlorobenzene	10	0.000	0.000	0.000	0.000	0.000	0.000
Ethylbenzene	100	0.000	0.000	0.000	0.000	0.000	0.000
Styrene	50	0.000	0.000	0.000	0.000	0.000	0.000
Xylene (total)	100	0.000	0.000	0.000	0.000	0.001	0.001
Hexane			0.001		0.002	5.55	0.003
į	1	<u> </u>			3.002		3.000

SITE.04

TABLE 8-2
Rainfall Data for April, 1995

Date Sampled	Daily Rainfall
04/01/95	0.00
04/02/95	0.00
04/03/95	0.00
04/04/95	0.00
04/05/95	0.00
04/06/95	0.01
04/07/95	0.00
04/08/95	0.01
04/09/95	0.00
04/10/95	0.43
04/11/95	0.00
04/12/95	0.00
04/13/95	0.00
04/14/95	0.01
04/15/95	0.00
04/16/95	0.00
04/17/95	0.00
04/18/95	0.00
04/19/95	0.01
04/20/95	0.87
04/21/95	0.01
04/22/95	0.01
04/23/95	0.02
04/24/95	0.00
04/25/95	0.00
04/25/95	0.01
04/27/95	0.00
04/28/95	0.00
04/29/95	0.00
04/30/95	0.00
Total	1.39

ATTACHMENT 8A

Repository Status Report: April, 1995

SITE.04

REPOSITORY STATUS REPORT: April, 1995

At the Rice University Library...

- 1. Remedial Investigation Report April, 1985
- 2. Remedial Investigation Report Appendices, Volume II, April, 1985
- 3. Remedial Investigation Report June, 1986 (Updated from April, 1985)
- 4. Remedial Investigation Report Appendices, Volume I, February, 1986 (Revised June, 86)
- 5. Remedial Investigation Report Appendices, Volume II, February, 1986 (Revised June, 1986)
- 6. Remedial Investigation Report Appendices, Volume III, February, 1986
- 7. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume I, December, 1986
- 8. 1986 Field Investigation and Supplemental Remedial Investigation Report French Limited Site Volume II, Appendices December, 1986
- 9. 1986 Field Investigation Hydrology Report, December 19, 1986
- 10. Endangerment Assessment Report February, 1987
- 11. Endangerment Assessment Report April 1987 (Updated from February, 1987)
- 12. Feasibility Study Report, March 1987
- 13. In Situ Biodegradation Demonstration Report Volume I Executive Summary, October 30, 1987 Revised 11-11-87
- 14. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987
- 15. In Situ Biodegradation Demonstration Report Volume II, October 30, 1987 (Revised February 1, 1988 at Site only)
- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices

MONTHLY PROGRESS REPORT Site Maintenance

- 17. In Situ Biodegradation Demonstration Report Volume III Appendices, October 30, 1987
- 18. In Situ Biodegradation Demonstration Report Volume III, Appendices, Supplemental Report, November 30, 1987
- In Situ Biodegradation Demonstration Report French Limited Site, Volume IV October 30, 1987 + Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site, Volume IV November 30, 1987 + Appendices
- 21. In Situ Biodegradation Demonstration Report French Limited Site Volume V, October 30, 1987
- 22. In Situ Biodegradation Demonstration Report French Limited Site Volume V Appendices, November 30, 1987 Supplemental Report
- 23. In Situ Biodegradation Demonstration Report French Limited Site Volume VI
 Appendices, October 30, 1987
- 24. In Situ Biodegradation Demonstration Report French Limited Site Volume VII Appendices, October 30, 1987
- 25. In Situ Biodegradation Demonstration Report French Limited Site Volume VIII Appendices, October 30, 1987
- 26. In Situ Biodegradation Demonstration Report French Limited Site Volume IX Appendices, October 30, 1987
- 27. In Situ Biodegradation Demonstration Report French Limited Site Volume X Appendices, October 30, 1987
- 28. In Situ Biodegradation Demonstration Report French Limited Site Volume XI Appendices, October 30, 1987
- 29. In Situ Biodegradation Demonstration Report French Limited Site Volume XII Appendices, October 30, 1987
- 30. In Situ Biodegradation Demonstration Report French Limited Site Volume XIII Appendices, October 30, 1987
- 31. In Situ Biodegradation Demonstration Report French Limited Site Volume XIV Appendices, October 30, 1987

- 32. In Situ Biodegradation Demonstration Report French Limited Site Volume XV Appendices, October 30, 1987
- 33. In Situ Biodegradation Demonstration Report French Limited Site Volume XVI Appendices, October 30, 1987
- 34. In Situ Biodegradation Demonstration Report French Limited Site Volume XVII.
 Appendices, October 30, 1987
- 35. In Situ Biodegradation Demonstration Report French Limited Site Volume XVIII Appendices, October 30, 1987
- 36. Proposed In Situ Biodegradation Demonstration French Limited Site Phase III, April, 1987
- 37. In Situ Bioremediation Demonstration French Limited April, 1987 Monthly Report, Equipment Evaluation Phase IV
- 38. In Situ Bioremediation Demonstration French Limited May, 1987 Monthly Report, Equipment Evaluation Phase IV
- 39. In Situ Bioremediation Demonstration French Limited June, 1987 Monthly Report, Equipment Evaluation Phase IV
- 40. In Situ Bioremediation Demonstration French Limited July, 1987 Monthly Report, Equipment Evaluation Phase IV
- 41. In Situ Bioremediation Demonstration French Limited August, 1987 Monthly Report, Equipment Evaluation Phase IV
- 42. In Situ Bioremediation Demonstration French Limited November, 1987 Monthly Report, Equipment Evaluation Phase IV
- 43. In Situ Bioremediation Demonstration French Limited December, 1987 Monthly Report, Equipment Evaluation Phase IV
- 44. In Situ Bioremediation Demonstration French Limited January, 1988 Monthly Report, Equipment Evaluation Phase IV
- 45. In Situ Bioremediation Demonstration French Limited February, 1988 Monthly Report, Equipment Evaluation Phase IV
- 46. In Situ Bioremediation Demonstration French Limited March, 1988 Monthly Report, Equipment Evaluation Phase IV

- 47. In Situ Bioremediation Demonstration French Limited April, 1988 Monthly Report, Equipment Evaluation Phase IV
- 48. In Situ Biodegradation Demonstration French Limited May/June 1988 Monthly Report, Equipment Evaluation Phase IV
- 49. In Situ Bioremediation Demonstration French Limited July, 1988 Monthly Report, Equipment Evaluation Phase IV
- 50. In Situ Bioremediation Demonstration French Limited August, 1988 Monthly Report, Equipment Evaluation Phase IV
- 51. In Situ Bioremediation Demonstration French Limited September, 1988 Monthly Report, Equipment Evaluation Phase IV
- 52. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 53. In Situ Biodegradation Demonstration Phase III Quality Assurance Project Plan for French Limited Site, March, 1987
- 54. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 55. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 56. Remedial Action Plan Volume I April, 1990
- 57. Remedial Action Plan Volume I September, 1990 (Updated from April, 1990)
- 58. Remedial Action Plan Volume II Quality Assurance April, 1990
- 59. Remedial Action Plan Volume II Quality Assurance September, 1990 (Updated from April 1990) Revised June 3, 1991
- 60. Remedial Action Plan Volume II Quality Assurance June, 1990
 Appendix A Quality Assurance Sampling Procedures and
 Appendix B Analytical Methods B.1 B.53, September 22, 1989
 Revised September 28, 1990
- 61. Remedial Action Plan Volume III Health and Safety, July 20, 1990

- 62. Remedial Action Plan Volume IV Spill and Volatile Organic Release Contingency Plan (April 6, 1990)
- 63. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, May, 1990
 Page v.i.3 Missing
- 64. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990, (Updated from May, 1990)
- 65. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1,1990
- 66. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 67. 1988 Slough Investigation Report French Limited Site, October 1988
- 68. Ambient Air Impact Risk Assessment Report, May 5, 1989
- 69. Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July
 22, 1988
 Page 80 Missing
- 70. French Limited Site Hurricane Gilbert Preparation Report, October, 1988
- 71. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 72. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 73. Hydrogeologic Characterization Report, March 1989
- 74. Hydrogeologic Characterization Report Appendices, March 1989
- 75. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- 76. Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program Volume I, August 16, 1989
- 77. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II Appendix A

MONTHLY PROGRESS REPORT Site Maintenance

78.	Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program
	Volume III Appendix A, August 16, 1989

- 79. Riverdale Lake Area Remediation Program August 15, 1989
- 80. Flood and Migration Control Wall Design Report, August 16, 1989
- 81. Flood and Migration Control Wall Design Report Appendix C Access Way Design, September, 1989
- 82. North Pit Remediation Report French Limited Site, November 6, 1989
- 83. Installation Report for Flood and Migration Control Wall, January 8, 1990
- 84. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 85. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- 86. Installation Report for Flood and Migration Control Wall Appendix C Pile Driving Inspection Report January 8, 1990
- 87. Flood Wall Gate Test Report French Limited Site, February 1990
- 88. French Limited Remediation Design Report Executive Summary Bioremediation/Shallow Aquifer, July, 1991
- 89. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III Summary Report and Appendices A-H, July 1991
- 90. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 91. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III, of III Appendices N-P, June 1991
- 92. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations (March 20, 1991)
- 93. Bioremediation Facilities Design Report Volume III of IV Appendix E Design Specifications (March 20, 1991)

MONTHLY PROGRESS REPORT Site Maintenance

- 94. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 95. Public Health Assessment for French Limited March 30, 1993 from U.S. Department of Health and Human Services
- 96. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- 97. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 98. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3, Appendix F continued
- 99. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5,
 Appendix H
- CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 102. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (5-21-87)
- 103. Summary of Remedial Alternative Selection 1988
- 104. Declaration for the Record of Decision 1988
- 105. Record of Public Meeting Regarding Remedial Investigation and Feasibility Study (2-11-88) (Updated from June 21, 1987)
- 106. Consent Decree between the Federal Government and the FLTG
- 107. French Limited Superfund Site Community Relations Revised Plan August, 1989 Jacob's Engineering
- 108. Results of the French Limited Task Group Survey (Goldman and Company)
 April, 1987
- 109. Goldman Public Relations Clipping Report

- BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April, 1994
- 111. Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I
- 112. Laboratory Evaluation of Biodegradation at the French Limited Site
- 113. French Limited Site Focused Feasibility Study (May 1987)
- 114. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- Annual Groundwater Monitoring Report, December 1993,
 Appendices C-H
- DNAPL Study Remedial Alternative Selection and Feasibility Study Report,
 November 1994
- 117. Cell E and Cell D/F Remediation Verification Report
- 118. French Limited Wetlands Mitigation, Final Site Restoration Plan
- 119. French Limited Wetlands Mitigation, Site Selection Report
- 120. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 121. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 122. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 123. Environmental Protection Agency, Region VI, Hazardous Waste Management Division, First Five Year Review (Type Ia), CERCLIS TXD-980514814, December 1944
- 124. ARCS, French Limited Site 1993, Annual Groundwater Sampling and Comparison Report, CH2M Hill, January, 1995
- 125. Annual Groundwater Monitoring Report, December, 1994, Report and Appendices A-G
- 126. Monthly Progress Report, January 1992
- 127. Monthly Progress Report, January, 1992 Appendices A-C

- 128. Monthly Progress Report, January, 1992 Appendices E, F
- 129. Monthly Progress Report, January, 1992 Appendices G
- 130. Monthly Progress Report, February, 1992
- 131. Monthly Progress Report, February, 1992 Appendices A-B
- 132. Monthly Progress Report, February, 1992 Appendices C 1
- 133. Monthly Progress Report, February, 1992 Appendices C 2
- 134. Monthly Progress Report, February, 1992 Appendices D-E
- 135. Monthly Progress Report, March, 1992
- 136. Monthly Progress Report, March, 1992, Appendix A
- 137. Monthly Progress Report, April, 1992
- 138. Monthly Progress Report, April, 1992, Appendices A-B
- 139. Monthly Progress Report, May, 1992
- 140. Monthly Progress Report, May, 1992, Appendices A-B
- 141. Monthly Progress Report, June, 1992
- 142. Monthly Progress Report, June, 1992, Appendices A-B
- 143. Monthly Progress Report, July 1992
- 144. Monthly Progress Report, July 1992, Appendices A-B
- 145. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 1 of 3
- 146. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 2 of 3
- 147. Monthly Progress Report, July 1992, Appendices B1-B22 Vol. 3 of 3
- 148. Monthly Progress Report, August, 1992
- 149. Monthly Progress Report, August, 1992, Appendices A-B

- 150. Monthly Progress Report, September, 1992
- 151. Monthly Progress Report, September, 1992, Appendices A-B
- 152. Monthly Progress Report, October, 1992
- 153. Monthly Progress Report, October, 1992, Appendices A-B
- 154. Monthly Progress Report, November, 1992
- 155. Monthly Progress Report, November, 1992 Appendices A-B
- 156. Monthly Progress Report, December, 1992
- 157. Monthly Progress Report, December, 1992 Appendices A, B
- 158. Monthly Progress Report, January, 1993
- 159. Monthly Progress Report, February, 1993
- 160. Monthly Progress Report, March, 1993
- 161. Monthly Progress Report, April, 1993
- 162. Monthly Progress Report, May, 1993
- 163. Monthly Progress Report, June, 1993
- 164. Monthly Progress Report, July, 1993
- 165. Monthly Progress Report, August, 1993
- 166. Monthly Progress Report, September, 1993
- 167. Monthly Progress Report, October, 1993
- 168. Monthly Progress Report, November, 1993
- 169. Monthly Progress Report, December, 1993
- 170. Monthly Progress Report, January, 1994
- 171. Monthly Progress Report, February, 1994

MONTHLY PROGRESS REPORT Site Maintenance

172.	Monthly	Progress	Report,	March.	1994
------	---------	-----------------	---------	--------	------

- 173. Monthly Progress Report, April, 1994
- 174. Monthly Progress Report, May, 1994
- 175. Monthly Progress Report, June, 1994
- 176. Monthly Progress Report, July, 1994
- 177. Monthly Progress Report, August, 1994
- 178. Monthly Progress Report, September, 1994
- 179. Monthly Progress Report, October, 1994
- 180. Monthly Progress Report, November, 1994
- 181. Monthly Progress Report, December, 1994
- 182. Monthly Progress Report, January, 1995
- 183. Monthly Progress Report, February, 1995
- 183. Monthly Progress Report, March, 1995

At the Crosby library...

- 1. Remedial Investigation Report June, 1986
- 2. Remedial Investigation Appendices Volume I June, 1986 Revised from Feb. 1986
- 3. Remedial Investigation Appendices Volume II June, 1986 Revised from Feb. 1986
- 4. Remedial Investigation Appendices Volume III February, 1986
 Pages 1 and 2 of 10 Res. Engr Tab Missing
 Analytical Report Worksheet 7-8-9-10 Missing
 Pages 1 and 2 of 6 Missing
 Tab 9 H 1-8 Missing, H 11-19 Missing, Page 1 of 10 Missing
 Page 3 Worksheet Missing
 Tab 10 H 1-3 Missing, Page 3-6 of 6 Missing, Page 1-6 Missing
 Tab 12 Page 2-10 of 10 Missing
- 5. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume I, December, 1986
- 6. 1986 Field Investigation and Supplemental Remedial Investigation Report Volume II, Appendices, December 1986
- 7. 1986 Field Investigation Hydrology Report, December 19, 1986
- 8. Feasibility Study Report, March 1987
- 9. Feasibility Study Report, March 1987
- 10. French Limited Site Focused Feasibility Study, May 1987
- 11. Endangerment Assessment Report February 1987
- 12. Endangerment Assessment Report April 1987
- 13. Endangerment Assessment Report April 1987
- 14. In Situ Biodegradation Demonstration Report Volume I Executive Summary October, 1987 (Revised 12-15-87)
- 15. In Situ Biodegradation Demonstration Report Volume II October 30, 1987

- 16. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume I, November 30, 1987
 Missing Supplements to 5-6 and 7 to 10
- 17. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume II, November 30, 1987 + Appendices
- 18. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume III, November 30, 1987 + Appendices
- 19. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume IV, November 30, 1987 -Appendices
- 20. In Situ Biodegradation Demonstration Supplemental Report French Limited Site Volume V Appendices, November 30, 1987
- 21. Results of the French Limited Task Group Survey (Goldman and Company)
 April 1987
- 22. Goldman Public Relations Clipping Report
- 23. Consent Decree between the Federal Government and the FLTG
- 24. Consent Decree between the Federal Government and the FLTG
- 25. Laboratory Evaluation of Biodegradation at the French Limited Site, December 1986.
- 26. Field Evaluation of Biodegradation at the French Limited Site (Phase II) Volume I, March, 1987.
- 27. Bioremediation Facilities Design Report Volume II of IV Appendices, Reports and Calculations March 20, 1991
- 28. Bioremediation Facilities Design Report Volume III of IV Appendix E Design Specifications March 20, 1991
- 29. Bioremediation Facilities Design Report Volume IV of IV Air Monitoring, March 20, 1991
- 30. Remedial Action Plan Volume I, September 28, 1990
- 31. Remedial Action Plan Volume II Quality Assurance, Revised June 3, 1991

- 32. Remedial Action Plan Volume II Appendix A Quality Assurance Sampling Procedures and Appendix B Analytical Methods B.1 B.53, September 28, 1990
- 33. Remedial Action Plan Volume III Health and Safety, July 20, 1990
- 34. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 35. Remedial Action Plan Volume V Shallow Aquifer and Subsoil Remediation Process Design, July 20, 1990
- 36. Hydrogeologic Characterization Report, March 1989
- 37. Hydrogeologic Characterization Report Appendices, March 1989
- 38. Supplemental Biodegradation Equipment Evaluation French Limited Site Phase IV, September 26, 1988
- 39. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume I, February 1, 1990
- 40. 1988 Equipment Evaluation Phase IV Report French Limited Site: Volume II, February 1, 1990
- 41. Site Safety and Health Plan French Limited Site Phase III, April 1987 (Revision 2)
- 42. San Jacinto River May 19, 1989 Flood Event Report, June 1989
- 43. Post San Jacinto River May 1989 Flood Event Soils and Water Analysis Program Volume I, August 16, 1989
- 44. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume II, Appendix A
- 45. Post San Jacinto River 1989 Flood Event Soil and Water Analysis Program Volume III, Appendix A, August 16, 1989
- 46. 1988 Slough Investigation Report French Limited Site, October 1988
- 47. Flood and Migration Control Wall Design Report, August 16, 1989

MONTHLY PROGRESS REPORT Site Maintenance

48.	Flood and Migration Control Wall Design Report (Flood is spelled incorrectly or
	Volume Cover) + Appendix C - Access way Design September 1989

- 49. Installation Report for Flood and Migration Control Wall January 8, 1990
- 50. Installation Report for Flood and Migration Control Wall Appendix A ENSR Site Logs
- 51. Installation Report for Flood and Migration Control Wall Appendix B Inspection Reports
- 52. Installation Report for Flood and Migration Control Wall
 Appendix C Pile Driving Inspection Report January 8, 1990
- 53. Flood Wall Gate Test Report French Limited Site, February 1990
- 54. North Pit Remediation Report French Limited Site, November 6, 1989
- 55. Workplan for the Shallow Aquifer Pumping Tests for the French Limited Site, July 22, 1988

 (Additional Title Pumping Test Program for Shallow Alluvial Aquifer Zone)
- 56. French Limited Site Hurricane Gilbert Preparation Report October, 1988
- 57. Riverdale Lake Area Remediation Program, August 15, 1989
- 58. Addendum to Quality Assurance Project Plan for the French Limited Site In Situ Biodegradation Demonstration Phase III, February 16, 1990
- 59. Potable Water Well Installation Report French Limited Site, December 7, 1988
- 60. Bioresidue Fixation Alternatives Evaluation Report French Limited Site March 20, 1989
- 61. Ambient Air Impact Risk Assessment Report, May 5, 1989
- Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume I of III -Summary Report and Appendices A-H, July 1991
- 63. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume II of III Appendices I-M, June 1991
- 64. Shallow Aquifer and Subsoil Remediation Facilities Design Report Volume III of III Appendices N-P, June 1991

- 65. French Ltd. Remediation Design Report Executive Summary Bioremediation Shallow Aquifer July 1991
- 66. BioGEE International, Inc., Project Report Biotreatability Study Using Isolated Indigenous Organisms, April 15, 1994
- 67. Black EPA Binder
- 68. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 1, Report, Appendices A-E
- 69. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 2, Appendix F
- 70. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 3 Appendix F continued
- 71. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 4, Appendix G
- 72. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 5, Appendix H
- 73. CH2M Hill, Cell E Verification Remediation Report, May 1993, Volume 6, Appendix H continued
- 74. Equipment Evaluation Phase IV Report November, 1987 Monthly Report
- 75. Equipment Evaluation Phase IV Report December, 1987 Monthly Report
- 76. Microfiche Field Reports 1988 -small box
- 77. Annual Groundwater Monitoring Report, December 1993, Report and Appendices A-B
- 78. Annual Groundwater Monitoring Report, December 1993, Appendices C-H
- 79. DNAPL Study Remedial Alternative Selection and Feasibility Study Report, November 1994
- 80. Cell E and Cell D/F Remediation Verification Report
- 81. French Limited Wetlands Mitigation, Final Site Restoration Plan

MONTHLY PROGRESS REPORT Site Maintenance

- 82. French Limited Wetlands Mitigation, Site Selection Report
- 83. French Limited Wetlands Mitigation, 404 and 401 Permit Application, U.S. Army Corps of Engineers, Galveston, TX
- 84. Quality Assurance Report, February 15, 1993, Report No. QA93003
- 85. Quality Assurance Report, January 20, 1994, Report No. QA94001
- 86. Environmental Protection Agency, Region VI, Hazardous Waste Management Division, First Five Year Review (Type Ia), CERCLIS TXD-980514814, December 1944
- 87. ARCS, French Limited Site 1993, Annual Groundwater Sampling and Comparison Report, CH2M Hill, January, 1995
- 88. Annual Groundwater Monitoring Report, December, 1994, Report and Appendices A-G
- 89. Monthly Progress Report, January, 1992
- 90. Monthly Progress Report, January, 1992, Appendices A-C
- 91. Monthly Progress Report, January, 1992, Appendices E-F
- 92. Monthly Progress Report, January, 1992, Appendix G
- 93. Monthly Progress Report, February, 1992
- 94. Monthly Progress Report, February, 1992, Appendices A-B
- 95. Monthly Progress Report, February, 1992, Appendices C 1
- 96. Monthly Progress Report, February, 1992 Appendices C 2
- 97. Monthly Progress Report, February, 1992, Appendices D-E
- 98. Monthly Progress Report, March, 1992
- 99. Monthly Progress Report, March, 1992, Appendix A
- 100. Monthly Progress Report, April, 1992
- 101. Monthly Progress Report, April, 1992, Appendices A-B

- 102. Monthly Progress Report, May, 1992
- 103. Monthly Progress Report, May, 1992, Appendices A-B
- 104. Monthly Progress Report, June, 1992
- 105. Monthly Progress Report, June, 1992, Appendices A-B
- 106. Monthly Progress Report, July, 1992
- 107. Monthly Progress Report, July, 1992, Appendices A-B
- 108. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 1 of 3
- 109. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 2 of 3
- 110. Monthly Progress Report, July, 1992, Appendices B1-B22 Vol. 3 of 3
- 111. Monthly Progress Report, August, 1992
- 112. Monthly Progress Report, August, 1992, Appendices A-B
- 113. Monthly Progress Report, September, 1992
- 114. Monthly Progress Report, September, 1992, Appendices A-B
- 115. Monthly Progress Report, October, 1992
- 116. Monthly Progress Report, October, 1992, Appendices A-B
- 117. Monthly Progress Report, November, 1992
- 118. Monthly Progress Report, November, 1992, Appendices A-B
- 119. Monthly Progress Report, December, 1992
- 120. Monthly Progress Report, December, 1992, Appendices A-B
- 121. Monthly Progress Report, January, 1993
- 122. Monthly Progress Report, February, 1993
- 123. Monthly Progress Report, March, 1993

124. N	1onthly	Progress	Report.	April.	1993
--------	---------	-----------------	---------	--------	------

- 125. Monthly Progress Report, May, 1993
- 126. Monthly Progress Report, June, 1993
- 127. Monthly Progress Report, July, 1993
- 128. Monthly Progress Report, August, 1993
- 129. Monthly Progress Report, September, 1993
- 130. Monthly Progress Report, October, 1993
- 131. Monthly Progress Report, November, 1993
- 132. Monthly Progress Report, December, 1993
- 133. Monthly Progress Report, January, 1994
- 134. Monthly Progress Report, February, 1994
- 135. Monthly Progress Report, March, 1994
- 136. Monthly Progress Report, April, 1994
- 137. Monthly Progress Report, May, 1994
- 138. Monthly Progress Report, June, 1994
- 139. Monthly Progress Report, July, 1994
- 140. Monthly Progress Report, August, 1994
- 141. Monthly Progress Report, September, 1994
- 142. Monthly Progress Report, October, 1994
- 143. Monthly Progress Report, November, 1994
- 144. Monthly Progress Report, December, 1994
- 145. Monthly Progress Report, January, 1995.

11

- 146. Monthly Progress Report, February, 1995
- 147. Monthly Progress Report, March, 1995

12 Large Brown Folders:

- 1. Administrative Record Index 2 folders
 Administrative Record 09-26-79 thru 05-29-83
 Administrative Record 06-03-83 thru 11-28-83
 Administrative Record 02-28-84
 Administrative Record 03-09-84
 Technical Comments on Remediation Investigation Report 2-84
 Supplemental Investigation Resource Engr. 1-84
 Administrative Record 3-9-84
- Administrative Record 08-31-84
 Administrative Record 10-29-84 thru 01-22-85
 French Ltd. Technical and Regulatory Concepts for In-Place Closure, 09-84
 Supplementary Investigation, May 1984
 French Ltd. Field Activities Work Plan, February 1985
 Supplementary Investigation Attachments, May 1985
- 3. Administrative Record 02-04-85
 Remedial Investigation, Vol. I Report, April 1985
 Remedial Investigation, Vol. II Appendices, April 1985
- 4. Administrative Record 04-08-85 thru 11-26-85
 Administrative Record 02-14-86 thru 04-04-86
 Technical Report for Resource Engineering, 12-03-85
 Appendix QA Program for French Ltd., 12-18-85
 1985 Field Investigation Report Appendices, January, 1986
 1985 Field Investigation Report , January, 1986
- 5. Administrative Record 04-01-86
 Remedial Investigation Report Appendices, Vol. II, April, 1986
- 6. Administrative Record 4-1-86
- 7. Administrative Record 05-08-86 thru 05-12-86 Administrative Record 06-01-86 Administrative Record 01-05-87 Remedial Investigation Report, June 1986 Laboratory Evaluation of Biodegradation, 12-86

1986 Field Investigation Hydrology Report, 12-86 Endangerment Assessment Report, 2-87

- 8. Feasibility Study, March 1987
- 9. Administrative Report 03-11-87 thru 03-25-87 Administrative Report 4-1-87 Administrative Report 4-7-87 In Situ Biodegradation Demonstration Phase III QA Project Plan 3-87 Endangerment Assessment Report, 4-87 Proposed In Situ Biodegradation Demonstration French Limited Site Phase III 4-87
- 10. Administrative Report 4-15-87 thru 5-l-87
 Administrative Report 5-21-87 thru 7-2-87
 French Limited Focused Feasibility Study, ERT 5-87
 Revised Field Evaluation of Biodegradation at French Site Phase II Vol. I
 -Revised 7-10-87
- 11. Administrative Report 7-20-87 11-23-87
 Administrative Report Undated Documents 000122-000134
 In Situ Biodegradation Demonstration Report Vol. I Executive Summary 10-87
 French Limited Site Work Plan Vol. I Project Activities and Sample Plan
- 12. Texas Air Control Board Regulations I thru IX
 Standard Exemption List
 Application for Permit

During the month of April, the status of both libraries have been reviewed and the above information found to be accurate.

9.0 WETLANDS RESTORATION

9.1 Summary of Activities and Progress

Conducted safety meetings at the start of each work shift; inspected all equipment for safety compliance each shift; used daily lottery ticket safety awareness program.

Updated site work plan based on field progress.

Some dewatering was required after each significant rainfall; generally dry weather allowed good excavation progress.

Continued excavation of flow channels; about 95% complete at end of month.

Completed final grading and applied topsoil in about 50% of the area.

Completed tree planting around the fresh-water ponds.

Bridge construction is 60% complete.

Decreased site security coverage since there has been minimal public contact.

Completed the site re-vegetation plan and secured the necessary tree species.

Initiated the site re-vegetation plan.

Conducted five site tours for interested parties.

Reviewed the project status, progress, and issues with the agency review committee; the agencies are satisfied with site progress.

Uncovered affected soil while excavating a tidal flow channel; the area was secured and the affected soil was sampled and analyzed; the soil did not exhibit any hazardous characteristics, but the reactive sulfide and total petroleum hydrocarbon levels were high,

and the affected soil was classified as a class I, non-hazardous waste; response options are being developed.

9.2 Problem Areas and Solutions

Problem

Solution

Safety awareness

Daily safety meeting; lottery ticket program; frequent equipment inspections.

Excavation in wet, soft areas.

Revise work schedule to allow drainage; pump water on "off" days.

Affected soil in excavation area.

Isolate area; sample and analyze affected soils; relocate tidal channel; review response options with City of Baytown.

9.3 Problems Resolved

Problem

Solution

Trees in excavation area.

Transplant desirable trees to temporary nursery area; treat large trees with nutrients.

Water inflow to site.

Seal culverts; secure sewer lines and stormwater lines; regular pumping.

9.4 Deliverables Submitted

March, 1995, Monthly Report.

Project Refinement Status Report.

9.5 Upcoming Events and Activities

Daily safety program.

Continue civil work on site.

Replace topsoil and vegetate.

Contour site.

Develop response plan for affected soil.

Continue re-vegetation.

Develop forecast of maintenance requirements.